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Climate complexity and resulting challenges

Exploiting climate data: from correlation to causality

Causal effect networks and applications (mainly)in climate

Challengesto be addressed

Take home messages
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Climate: A conceptual view

Changes in the Atmosphere: Changes in the

27 Composition, Circulation Hydrological Cycle
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Hydrosphere:
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Changes in the Ocean:

Circulation, Sea Level, Biogeochemistry

Land Surface

Changes in the Cryosphere:
Snow, Frozen Ground, Sea Ice, Ice Sheets, Glaciers

Changes in/on the Land Surface:
Orography, Land Use, Vegetation, Ecosystems

IPCC 4th Assessment Report, 2007
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The Bretherton horrendogram (1986)

CONCEPTUAL MODEL of Earth System process operating on timescales of decades 10 centuries
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"=on timescale of hours to days * = on timescale of months to seasons ¢ = flux n = concentration

National Research Council, 1986 2

D
D
D

-
y
f?

Reik V. Donner, reik.donner@h2.de 4 Hodhsdhiiile
Magdeburg e Stendal

=)
|




Interplay of multiple individual subsystems

Behavior of individual subsystems controlled by mechanisms, for which
the response does not depend linearly on the driving variables

= Necessary condition for existence of qualitative different system states

relevant processes take place on a variety of spatial and
temporal scales

Relevant external parameters are time-dependent (solar insolation,
aerosol and greenhouse gas concentrationsin atmosphere)
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Numerical weather and climate predictions

(a)

FORECAST SKILL

WEATHER FORECASTS
predictability comes from initial
atmospheric conditions

S2S PREDICTIONS
predictability comes from initial

atmospheric conditions, monitoring the
land/sea/ice conditions, the stratosphere

excellent and other sources
SEASONAL OUTLOOKS
predictability comes primarily from
good sea-surface temperature conditions;

accuracy is dependent on ENSO state

Ll '\‘

poor
zZero
1-10 days Weekly averages
30-90+ days
FORECAST RANGE

Whiteetal., 2017
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nature » news » article

NEWS | 14 November 2023

DeepMind Al accurately forecasts
weather — on a desktop computer

The machine-learning model takes less than a minute to predict future weather
worldwide more precisely than other approaches.
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Numerical weather and climate predictions

The S2S Prediction Gap

Higher

WEATHER EVENTS $25 EXTREMES SEASONAL OUTLOOKS
El Nino-Southern Oscillation,
temperature and precipitation
anomalies

Individual storm events:
blizzards, rainstorms,
hurricanes

Tropical cyclone activity,
heat waves, storm tracks,
severe weather threats
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hours 2 weeks 1 month 3 months 12 months
Prediction lead time
. . Adapted from: iri.columbia.edu/news/qa-subseasonal-prediction-project
Mariottiet al., 2018
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Teleconnections as sources of predictability

Weather Prediction Bridging Weather and Climate: Climate Prediction
Initial Conditions ' ‘ . & Boundary Conditions
Data Assimilation Subseasonal-to-Seasonal (S2S) Prediction  co..cciiisen
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Example: El Nino Southern Oscillation (ENSO)

shfwm o

El Nifio ‘\“"

: ‘ dry, sinking air
warmer than average
- cooler than average

Thermocline

Figure 1| Normal conditions in the tropical
Pacific. Warm surface water and air are pushed
to the west by prevailing winds. A consequence is
upwelling of cold water on the eastern side, and

a shallow thermocline (a subsurface boundary
that marks a sharp contrast between warm upper
waters and colder deeper waters). Opposite
oceanographic conditions prevail on the western
side. In the atmosphere, the west is warmer and .
wetter. Here and in Figure 2, redder colours www.climate. go V/ enso
denote warmer waters, bluer colours denote

cooler waters.

Ashok & Yamagata, 2009
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How to identify teleconnection patterns relevant for a specific climate phenomenon
of interest and unveil the underlying physical mechanisms by which they exert
control?
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Original motivation: extract dominating variations from spatio-temporal fields of
climate observationsrecords

Linear PCA:
Diagonalization of lag-zero covariance matrix C of multivariate time series (matrix X)

C=X"X with C=UTSU and 3 =diag(c?’,..c2)

 Compute correlation matrix of all variables
e Estimate eigenvalues and eigenvectors

* Eigenvectors: additive decompositioninto principal components (weighted
superpositions of original variables) with individual variances corresponding to
associated eigenvalues

—> spatial EOF patterns + index/score time series describing magnitude and sign of
individual EOF modes
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Example:leading EOF (EOF-1) of near-surface air pressure in Arctic
=> Dipole structure (Arctic Oscillation)
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regression map of 1000mb height {m)
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EOF analysis

Example:leading EOF (EOF-1) of near-surface air pressure in Arctic

=> Dipole structure (Arctic Oscillation)

Arctic Oscillation,
Positive Phase

Stronger

¥ Trade Winds T

b S & ¢
Less Cold Atmosphere %

Arctic Oscillation,
Negative Phase
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Purpose: extract dominating spatio-temporal (co-)variability modes from fields of
climate observations

* Lineardecomposition/dimensionality reduction technique
 EOFsmodes do not always coincide with specific climatic mechanisms

* Intrinsictendency to exhibit dipole (or multipole) structures enforced by
orthogonality constraint between modes

* Multiple superimposed patterns needto be considered

» Spatial patterns = strength of co-variability, unclear relevance of associated
temporal patterns in other regions not highlighted by the same EOF
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Basic idea: discretization of dynamicsinto “symbols” and quantification of contingency
table of symbol frequencies (joint vs. marginal probabilities)
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Recipe: transform time seriesinto discretized representation using abstract symbols (aq,
b) from discrete (finite) alphabet A

= allows computation of different information-theoretic quantities:

function (measure for general statistical association)

Ly (7) = Z (T)|092 i s (7)

X Y
a,beA P

corresponds to difference

Iyy = Hyx + Hy — Hyy
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ICE CREAM

DRY, HOT AND SUNNY
SUMMER WEATHER

SUNBURN

Correlation (co-variability / statistical dependence) does not imply causality
Causality does not evenimply (linear) correlation
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Classical approach: linear predictive (Granger) causality

1. Buildlinearregression models (bivariate AR models)

X(t) = 2?21 Axx, ;X (t — j)*Z?:l Axy ;Y (t — ) + ex(t)
Y(t) = ?zlAYX,jX(t _j)+25')=1 Ayy ;Y (@ —J) + & (t)

2. Compare variance of error term &, (&,) with and without inclusion of Y (X) in the
first (second) equation

e If additional termfor Y in equation for X reduces error: Y Granger-causes X
e If additional term for X in equation for Y reduces error: X Granger-causes Y
* Practical:are Ay ; (Ayy ;) significantly different from 0 (e.g., via F test)?

Granger causality ~ predictiveskill contributed by another variable
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Classical Granger causality is based on predictions using a (linear) model for
dependences among different instances of two time series

—> Linearity (as well as any other model) assumption can be relieved by information
theoretic quantities: conditional mutual information, transfer entropy, etc.

I[(X:Y

Z) - z EL ‘.I'Jf < :I Z.:‘C X Zy( Y '1”(.3’. U| :}1“?7. ;J(fl{:]il[;f =)
— H(X|Z)+ H(Y|Z) — H(X.Y|Z)

* No conditioning variable Z: standard mutual information (nonlinear variant of
linear correlation)

 X-=currentinstance, Y = currentand past instances, Z = past instances of X:
from Y to X (nonlinear variant of linear Granger causality)
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General view: causality is statistically reflected by some
betweentwo time series respecting temporal order (cause precedes consequence at

)

Practical challenges (selection):
1. Linearframework (partial correlations or related characteristics based on linear
regression models) too restrictive (may overlook nonlinear dependencies)
= How do | know if linear framework is sufficient?

2. Nonlinear framework often too data-demanding for robust estimation based on
density estimation for the explicit timeseries values
—> Choice of entropy concept/dynamical aspect to focus on
3. Identification of relevant timelagsto be used (a) for the driver-response
relationship between X and Y and (b) in the conditioning variable(s)
= Model selection problem

4. Effect of any third variablesZ other than X and Y on their mutual relationshipis not
considered
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Need to distinguish direct from indirect statistical associations mediated by any third
variable(s) (e.g. commondriver or mediator)

(A) (B)

—> Causality betweentwo variables (in the sense of a directed statistical dependence)
is always relative to the set of additional variables taken into account for
conditioning

Remark: This further complicates the problem of identifying relevant lags for all
variables and also adds to computational complexity and data demand
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Conceptual framework: Graphical models
p‘c'lf:it present

t—3 t—2 t—1 t

S. L. Lauritzen, Graphical Models, Oxford, 1996
R. Dahlhaus, Metrika 51, 157 (2000)
M. Eichler, Probability Theory and Related Fields 1 (2012)
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[(X, 2:Y;) >0

[( X 2:Y;

)(1_1) > ()

HX; 2:Yi]Yio1) >0

o
-~

Reik V. Donner, reik.donner@h2.de

25

I Hochschule

Magdeburg  Stendal



Causal inference requires twoingredients:

1. Proper directed statistical association measure

Challenge:robust estimation of conditional probabilities from limited data with a
possibly large set of conditioning variables

2. Distinction betweendirect and indirect associations based on consideration of any
possible conditioning factors (serial dependence of response variable and lagged cross-
dependency with any third variables, both taken at arbitrary lags)

approach (e.g. using Python package tigramite, supporting
partial correlations and conditional mutual information)

Algorithmicgold standard: proper iterative exclusion of conditioning sets by means of
successive conditional independencetesting (e.g. using the PCMCI algorithm, cf.
Runge, Chaos, 2018)
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Given:

a set of time series of different variables supposed to reflect dynamical interactions
between different parts of a complex (geo-) system

Required:

Identification of direct vs. indirect coupling between variables
Direction, strength and associated lag(s) for eachinferred direct connection
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Example 1: Geomagnetic indices / solar wind

o 2001
g M\MM&LM
_;g MWWW

600 MMWA%MWMWM»W

B[nT]
]
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o 0 5000 10000 15000 20000 25000 Runge et al., 2018

sample in year [20 min]

Complication: causal links may change with time (different states of the coupled solar
wind-magnetosphere system) and also time-scale considered
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Example 2: Climate indices

() Path coefficient 8 (PCMCI) Processidentification for various
o teleconnectionindices
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Given:

One or more target variables to be causally explained and a large set of candidate
variables (e.g. spatial field of climate variability) from which relevant
precursor/predictor variables need to be identified first

Required:

Identification of direct vs. indirect coupling between variables
Direction, strength and associated lag(s) for eachinferred direct connection

Downstream effects of causal drivers: tables/spatial maps indicating which target
series are causally affected by the identified set of causal drivers influences (and

how strongly)

Y. N 2
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Step 1: Identify relevant actors (variables with associated time series) = network
nodes

e Multivariate statistics (e.g. EOF analysis)

e Variables/regions with strong bivariate statistical association with target variable
(e.g. correlation maps): response-guided precursor detection

e Variables/indices representing key processes/hypotheses discussedin literature:
theory-guided precursor selection

Step 2: Identify causal links among set of considered actors along with their
directionality, strength, and time lag

* Test hypotheseson processes
* Identify new teleconnections
* Quantify relevance of actors and links

NN N I 2
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Idealized workflow

a Complex system b Dimension reduction c Causal reconstruction
Time series on a spatio-temporal gird  Yielding regional components Including time lags

Spurious link due
to common driver

.Elndurect path

s
“,
.
L)

“
-

Shorttest paths
%, #strongest pahs

@ mediator

Largest (oa,n-?degnee
= largest influence

e Importance of nodes d Causal interaction quantification

Via aggregated node measuras Perturbation / information transfer

Rungeetal., 2015
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Example 1: Teleconnections between tropical
Pacific and Indian oceans

a) w w 0D j/s_éw-(j . Iagsinwee!(s b) t—4 r—3 r—2 —1 I
g - @
I . ; g 30°N No. 1
= .:; j e LT h T o No. 0
¢ PO N
o e~ s
D‘E 120°F 180° 120°W
T No.33 &
—UUB —0,04 UDD 0,08 0,0
MCE (node r.:olor) Path coeff. (link color}
Rungeetal., 2015
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Example 2: Stratospheric polar vortex dynamics

Kretschmeretal., 2016
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Example 3: Drivers of Indian Summer Monsoon

Path ff, . ff, .
T o — Di Capua et al., 2020
-0.50 -0.25 0.00 0.25 0.50 Q0 0.2 050 Q.79 1.0
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Spatial domain which is affected by a certainactor conditional on one or more others

(a) Correlation maps

Corr(A, C(lat, long))

- -
O e

Corr(B, C(lat, long))

(b) PCMCI-CEN
@- ~@

One CEN for each gridpoint C(lat, long) B

C(lat, long) - -
(c) Causal maps

B: Aj‘éﬂﬁt, long) | B
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Correlation map
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Di Capuaetal., 2020
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Predictive models from CEN

Estimation of CEN from short time series with nonlinear dependency

CEN analysis for variables changing on very different time scales
* Dynamics at specific scalesvs. dependencies across scales

* May require different concepts of bivariate (conditional) dependency (e.g.
phase-amplitude, phase-phase, amplitude-ampitude coupling, cf. Palus 2013)

Time/state-dependent/non-stationary causal linkages
* Exploration of processes leading to impactful extremes
* Changes in climate dynamics under global warming
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Straightforward if CEN based on partial correlations

)AIR Hmdcast

2'0: traln ir=1l. 88**) ~—— test (r=0. 85**) observ d ]

§ ol M A/ v \W :

£ 0.0 { A &\/ |

o - w -

-1.0} -

2,0L8 , . i
1979 1984 1989 1994 1999 2004 2009 2014

Years

Di Capuaetal., 2019

when being based on nonlinear similarity measure (e.g. conditional mutual
information): training of a flexibleregression model based on identified causal
predictors (e.g. using neural network)

Possible alternative: learning ODE model from data (e.g. using SINDy approach)
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Idea: replace sequences of continuous time series values (with embedding dimension D and

embedding delay 7) by clever symbolization with an alphabet of low cardinality (few informative

symbols)

* Quantileclasses: not very informative in case of slow variations

* Ordinal patterns: explicit amplitude information discarded, only relative order matters

* Visibility graphlets: visibility graphs among each sequence of length D (Mutua et al., Chaos,
2016; Wang et al., Chaos, 2019) — lower number of possible patterns than for ordinal
encoding
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Numerical results for different model systems: pattern frequency based approaches may be less

informative than pattern transition/co-occurrence frequency based approaches (Huang et al.,
Chaos, 2021)

= Use (lagged) co-occurrence frequencies among all possible pairs of ordinal patterns

Algorithm (Subramaniyam et al., Nonlin. Dyn., 2021):
1. For each pair of time series, estimate co-occurrence frequencies of ordinal patterns at lag 7

2. Compute Shannon entropies of (conditional) co-occurrence frequencies = matrices of
pairwise statistical associations indexed by considered time lag (Ruan et al., Chaos, 2019)

M M! (A) Directed chain
X1,T X2 2.5 [ \><7 T
H (a0 = = 30 per 7 )

i=1 j=I

10g2 p(jTJYZ |7T"-XI !T),

pairwise CE

1 1 1 1 1 1 1 1 Il 1
-10 9 -8 -7 6 5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Delays

(A) (B) (B) Fork

LN T ER

3->2

2+

pairwise CE
N
N

1.8 - - 1 1 1 1 1 1 1 1 1 1
-10 -9 8 -7 -6 -5 4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Delays

Subramaniyametal., 2021 2
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Idea 2: pattern frequency based approaches may be less informative than pattern transition/co-
occurrence frequency based approaches (Huang et al., Chaos, 2021) and do not inform on the
bivariate case

= Use (lagged) co-occurrence frequencies among all possible ordinal patterns

Algorithm (Subramaniyam et al., Nonlin. Dyn., 2021):

1.
2.

For each pair of time series, estimate co-occurrence frequencies of ordinal patterns at lag =

Compute Shannon entropies of (conditional) co-occurrence frequencies = matrices of
pairwise statistical associations indexed by considered time lag (Ruan et al., Chaos, 2019)

Find sets of abundant parents and children for each pattern
Identify minimal conditioning sets
Remove non-causal interactions by proper conditioning

Cautionary notes: Process in steps 3-5 involves several algorithmic parameters for numerical
stabilization!
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Example: 9 coupled AR processes

2.6 ! . : ; . . . .
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Example: 9 coupled AR processes

Same problem addressed using PCMCI based on partial correlations

(c) Path coefficient B (with 5 lags)
TO...
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(d)

Correct links
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* Causal effect network approach for identifying and quantifying causal relationships
among a set of variables

* Successful applications to problemsin space weather and climate variability, but
also others (not shown)

» Specificalgorithms available for special cases (e.g., instantaneous linkages, latent
variables, etc.): Python package tigramite by Jakob Runge

* Ongoing work: method adaptations/applications to specific types of data (e.g.
timing of events), circumventing limited data problems by clever choice of patterns

Announcement: PhD position likely available from 1 April 2024 (only non-German EU
citizens) — please contact me for details.
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