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Climate: A conceptual view
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IPCC 4th Assessment Report, 2007



The Bretherton horrendogram (1986)
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National Research Council, 1986



Characteristics of the climate system
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Complexity: Interplay of multiple individual subsystems

Nonlinearity: Behavior of individual subsystems controlled by mechanisms, for which 
the response does not depend linearly on the driving variables

 Necessary condition for existence of qualitative different system states

Multi-scale variability: relevant processes take place on a variety of spatial and 
temporal scales

Nonstationarity: Relevant external parameters are time-dependent (solar insolation, 
aerosol and greenhouse gas concentrations in atmosphere)



Numerical weather and climate predictions
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White et al., 2017



Numerical weather and climate predictions
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Numerical weather and climate predictions
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Mariotti et al., 2018



Teleconnections as sources of predictability
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Lang et al., 2020



Example: El Niño Southern Oscillation (ENSO)
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Ashok & Yamagata, 2009

www.climate.gov/enso



How to identify teleconnection patterns relevant for a specific climate phenomenon 
of interest and unveil the underlying physical mechanisms by which they exert 
control?

Overarching question
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Linear PCA:

Diagonalization of lag-zero covariancematrix C of multivariate time series (matrix X)

• Compute correlation matrix of all variables

• Estimate eigenvalues and eigenvectors

• Eigenvectors: additive decomposition into principal components (weighted 
superpositions of original variables) with individual variances corresponding to 
associated eigenvalues  

 spatial EOF patterns + index/score time series describing magnitude and sign of 
individual EOF modes

XXC T UUC T ),...,( 22

1 Ndiag with and

EOF analysis

Original motivation: extract dominating variations from spatio-temporal fields of
climate observations records
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EOF analysis

Example: leading EOF (EOF-1) of near-surface air pressure in Arctic
=> Dipole structure (Arctic Oscillation)
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EOF analysis

Example: leading EOF (EOF-1) of near-surface air pressure in Arctic
=> Dipole structure (Arctic Oscillation)
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Limitations of EOF analysis

Purpose: extract dominating spatio-temporal (co-)variabilitymodes from fields of
climate observations

• Linear decomposition/dimensionality reduction technique

• EOFs modes do not always coincide with specific climatic mechanisms

• Intrinsic tendency to exhibit dipole (or multipole) structures enforced by
orthogonality constraint between modes

• Multiple superimposed patterns need to be considered

• Spatial patterns = strength of co-variability, unclear relevanceof associated
temporal patterns in other regions not highlighted by the same EOF
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Limits of linear correlations

low 
correlation 
coefficient 
despite clear 
statistical 
relationship
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Nonlinear dependence: Mutual information

Basic idea: discretization of dynamics into “symbols” and quantification of contingency 
table of symbol frequencies (joint vs. marginal probabilities)
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Nonlinear dependence: Mutual information

Recipe: transform time series into discretized representation using abstract symbols (a, 
b) from discrete (finite) alphabet A

 allows computation of different information-theoretic quantities:

mutual information function (measure for general statistical association)

corresponds to entropy difference

Y

b

X

a

XY

ab

Aba

XY

abXY
PP

P
PI

)(
log)()(

,

2


 





𝐼𝑋𝑌 = 𝐻𝑋 +𝐻𝑌 −𝐻𝑋𝑌

Reik V. Donner, reik.donner@h2.de 18



Correlation versus Causality

Correlation (co-variability / statistical dependence) does not imply causality

Causality does not even imply (linear) correlation

19Reik V. Donner, reik.donner@h2.de



Causality among two time series

Classical bivariate approach: linear predictive (Granger) causality

1. Build linear regression models (bivariate AR models)

2. Compare variance of error term eX (eY) with and without inclusion of Y (X) in the
first (second) equation

• If additional term for Y in equation for X reduces error: Y Granger-causes X

• If additional term for X in equation for Y reduces error: X Granger-causes Y

• Practical: are AXY,j (AYX,j) significantly different from 0 (e.g., via F test)?

Granger causality ~ predictiveskill contributedby another variable
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Causality among two time series

Classical Granger causality is based on predictions using a (linear) model for
dependences among different instances of two time series

 Linearity (as well as any other model) assumption can be relieved by information
theoretic quantities: conditional mutual information, transfer entropy, etc.

• No conditioning variable Z: standard mutual information (nonlinear variant of
linear correlation)

• X = current instance, Y = current and past instances, Z = past instances of X: 
transfer entropy from Y to X (nonlinear variant of linear Granger causality)
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Causality among two time series

General view: causality is statistically reflected by some directed statistical association
between two time series respecting temporal order (cause precedes consequence at a 
certain lag or set of lags)

Practical challenges (selection): 

1. Linear framework (partial correlations or related characteristics based on linear 
regression models) too restrictive (may overlook nonlinear dependencies)

 How do I know if linear framework is sufficient?

2. Nonlinear framework often too data-demanding for robust estimation based on 
density estimation for the explicit time series values

 Choice of entropy concept/dynamical aspect to focus on

3. Identification of relevant time lags to be used (a) for the driver-response 
relationship between X and Y and (b) in the conditioning variable(s)

 Model selection problem

4. Effect of any third variables Z other than X and Y on their mutual relationship is not 
considered
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Causality among multiple time series

Need to distinguish direct from indirect statistical associations mediated by any third
variable(s) (e.g. common driver or mediator)

 Causality between two variables (in the sense of a directed statistical dependence) 
is always relative to the set of additional variables taken into account for
conditioning

Remark: This further complicates the problem of identifying relevant lags for all 
variables and also adds to computational complexity and data demand
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Causality among multiple time series

Conceptual framework: Graphical models
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Causality among multiple time series

Causal inference requires two ingredients:

1. Proper directed statistical associationmeasure

Challenge: robust estimation of conditional probabilities from limited data with a 
possibly large set of conditioning variables

2. Distinction between direct and indirect associations based on consideration of any
possible conditioning factors (serial dependence of response variable and lagged cross-
dependency with any third variables, both taken at arbitrary lags)

 Causal effect network approach (e.g. using Python package tigramite, supporting
partial correlations and conditional mutual information)

Algorithmic gold standard: proper iterative exclusion of conditioning sets by means of
successiveconditional independencetesting (e.g. using the PCMCI algorithm, cf. 
Runge, Chaos, 2018)
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Problem Setting 1
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Given: 

• a set of time series of different variables supposed to reflect dynamical interactions
between different parts of a complex (geo-) system

Required: 

• Identification of direct vs. indirect coupling between variables

• Direction, strength and associated lag(s) for each inferred direct connection



Example 1: Geomagnetic indices / solar wind

28Reik V. Donner, reik.donner@h2.de

Runge et al., 2018

Complication: causal links may change with time (different states of the coupled solar 
wind-magnetosphere system) and also time-scaleconsidered



Example 2: Climate indices
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Docquier et al., in press

Process identification for various
teleconnection indices



Problem Setting 2
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Given: 

• One or more target variables to be causally explained and a large set of candidate
variables (e.g. spatial field of climatevariability) from which relevant 
precursor/predictor variables need to be identified first

Required: 

• Identification of direct vs. indirect coupling between variables

• Direction, strength and associated lag(s) for each inferred direct connection

• Downstream effects of causal drivers: tables/spatial maps indicating which target
series are causally affected by the identified set of causal drivers influences (and
how strongly)



General strategy
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Step 1: Identify relevant actors (variables with associated time series) = network
nodes

• Multivariate statistics (e.g. EOF analysis)

• Variables/regions with strong bivariate statistical associationwith target variable 
(e.g. correlation maps): response-guided precursor detection

• Variables/indices representing key processes/hypotheses discussed in literature: 
theory-guided precursor selection

Step 2: Identify causal links among set of consideredactors along with their
directionality, strength, and time lag

• Test hypotheses on processes

• Identify new teleconnections

• Quantify relevance of actors and links



Idealized workflow
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Runge et al., 2015



Example 1: Teleconnections between tropical
Pacific and Indian oceans
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Runge et al., 2015



Example 2: Stratospheric polar vortex dynamics
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Kretschmeret al., 2016



Example 3: Drivers of Indian Summer Monsoon

Di Capua et al., 2020
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Causal maps

Di Capua et al., 2020
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Spatial domain which is affected by a certain actor conditional on one or more others
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Remaining challenges

• Predictive models from CEN

• Estimation of CEN from short time series with nonlinear dependency

• CEN analysis for variables changing on very different time scales

• Dynamics at specific scales vs. dependencies across scales

• May require different concepts of bivariate (conditional) dependency (e.g. 
phase-amplitude, phase-phase, amplitude-ampitude coupling, cf. Palus 2013)

• Time/state-dependent/non-stationary causal linkages

• Exploration of processes leading to impactful extremes

• Changes in climate dynamics under global warming
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Predictive models from CEN

Straightforward if CEN based on partial correlations

when being based on nonlinear similarity measure(e.g. conditional mutual 
information): training of a flexible regressionmodel based on identified causal
predictors (e.g. using neural network)

Possible alternative: learning ODE model from data (e.g. using SINDy approach)

Di Capua et al., 2019



How to escape the limited data problem?

39Reik V. Donner, reik.donner@h2.de

Idea: replace sequences of continuous time series values (with embedding dimension D and
embedding delay ) by clever symbolization with an alphabet of low cardinality (few informative 
symbols)

• Quantile classes: not very informative in case of slow variations

• Ordinal patterns: explicit amplitude information discarded, only relative order matters

• Visibility graphlets: visibility graphs among each sequence of length D (Mutua et al., Chaos, 
2016; Wang et al., Chaos, 2019) – lower number of possible patterns than for ordinal
encoding



How to escape the limited data problem?
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Numerical results for different model systems: pattern frequency based approaches may be less
informative than pattern transition/co-occurrence frequency based approaches (Huang et al., 
Chaos, 2021)

 Use (lagged) co-occurrence frequencies among all possible pairs of ordinal patterns

Algorithm (Subramaniyam et al., Nonlin. Dyn., 2021): 

1. For each pair of time series, estimate co-occurrence frequencies of ordinal patterns at lag 

2. Compute Shannon entropies of (conditional) co-occurrence frequencies = matrices of
pairwise statistical associations indexed by considered time lag (Ruan et al., Chaos, 2019)

Subramaniyam et al., 2021



How to escape the limited data problem?
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Idea 2: pattern frequency based approaches may be less informative than pattern transition/co-
occurrence frequency based approaches (Huang et al., Chaos, 2021) and do not inform on the
bivariate case

 Use (lagged) co-occurrence frequencies among all possible ordinal patterns

Algorithm (Subramaniyam et al., Nonlin. Dyn., 2021): 

1. For each pair of time series, estimate co-occurrence frequencies of ordinal patterns at lag 

2. Compute Shannon entropies of (conditional) co-occurrence frequencies = matrices of
pairwise statistical associations indexed by considered time lag (Ruan et al., Chaos, 2019)

3. Find sets of abundant parents and children for each pattern

4. Identify minimal conditioning sets

5. Remove non-causal interactions by proper conditioning

Cautionary notes: Process in steps 3-5 involves several algorithmic parameters for numerical
stabilization!



Example: 9 coupled AR processes
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Robust correct results over a wide range of
regularization parameters

Subramaniyam et al., 2021



Example: 9 coupled AR processes
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Same problem addressed using PCMCI based on partial correlations

Docquier et al., in press
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Take home messages

• Causal effect network approach for identifying and quantifying causal relationships
among a set of variables

• Successful applications to problems in space weather and climatevariability, but 
also others (not shown)

• Specific algorithms available for special cases (e.g., instantaneous linkages, latent 
variables, etc.): Python package tigramiteby Jakob Runge

• Ongoing work: method adaptations/applications to specific types of data (e.g. 
timing of events), circumventing limited data problems by clever choiceof patterns

Announcement: PhD position likely available from 1 April 2024 (only non-German EU 
citizens) – please contact me for details.


