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The problem with the Web




Example 1.1 %

Julie is a literature student. For her thesis, she needs to find a list
of Nobel Laureates in Literature who fought in a war, the year they were
awarded the Nobel prize, and the name of the war(s) they fought in.
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Nobel Laureates

We list Nobel laureates ordered by
category then year.

Literature

Year | Awardee
1901 | Sully Prudhomme

1953 | Winston Churchill
1954 | Ernest Hemingway

1964 | Jean-Paul Sartref

v

1983 | :William Golding

1985 | Claude Simon

TSartre declined.

Peace

Year | Awardee
1901 | Henry Dunant
1901 | Frédéric Passy

William G. Golding

Sir William Gerald Golding CBE
(1911-1993) was a British nov-
elist, playwright and poet. His
most celebrated works include the
novels "Lord of the Flies”, and
"Rites of Passage” for which he
was awarded the Booker Prize.

He joined the Royal Navy in 1940,
commanding a landing ship at the

Invasion of Normandy

On June 6" 1944 (D-Day), the
Western Allies of World War |l as-
saulted Nazi occupation forces from
the sea at Normandy, as part of
Operation Overlord.

What Nobel Laureates fought in WWII?

William G. Golding, . ..

Aidan Hogan
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Lucys Sedgyefyz

Ny sozf Lucys sedgyefyz ugwygyw
ci befyjugi fhyl iyeg.
Sofygefdgy

lyeg | Enegwyy
1901 | Zdssi Rgdwhummy

1953 | Nolzful Bhdgbhoss
1954 | Yglyzf Hymoljnei

1964 | Vyel-Reds Zegfgy'

1983 | ‘Nossoem Juswolj

1985 | Bsedwy Zomul

TZegfgy wybsolyw.
Ryeby

lyeg Enegwyy
1901 | Hylgi Wdlelf
1901 | Pgywygob Rezzi

v

Nossoem J. Juswolj

Zog Nossoem Jygesw Juswolj BCY
(1911-1993) nez e Cgofozh Ilu-
tysozf, rseigojhf elw ruyf. Hoz
muzf bysycgefyw nugqz olbsdwy fhy
lutysz "Sugw up fhy Psoyz”, elw
" Gofyz up Rezzejy” pug nhobh hy
nez enegwyw fhy " Cuuqyg Rgoay”.

Hy vuolyw fhy Guies Leti ol 1940,
bummelwolj e selwolj zhor ef fhy

Oltezoul up Lugmelwi

Ul vdly 6™ 1944 (W-Wei), fhy
Nyzfygl Essoyz up Nugsw Neg OO
ezzedsfyw Leao ubbdrefoul pugbyz
pgum fhy zye ef Lugmelwi, ez regf
up Urygefoul Utygsugw.

Ol nhobh negz hety Lucys Sedgyefyz pudjhf?

Nugsw Neg OO, . ..

Aidan Hogan
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Lucys Sedgyefyz

Ny sozf Lucys sedgyefyz ugwygyw
ci befyjugi fhyl iyeg.
Sofygefdgy

lyeg | Enegwyy
1901 | Zdssi Rgdwhummy

1953 | Nolzful Bhdgbhoss
1954 | Yglyzf Hymoljnei

1964 | Vyel-Reds Zegfgy'

1983 | ‘Nossoem Juswolj;

1985 | Bsedwy Zomul

v

TZegfgy wybsolyw.
Ryeby

lyeg Enegwyy
1901 | Hylgi Wdlelf
1901 | Pgywygob Rezzi

Nossoem J. Juswolj

Zog Nossoem Jygesw Juswolj BCY
(1911-1993) nez e Cgofozh Ilu-
tysozf, rseigojhf elw ruyf. Hoz
muzf bysycgefyw nugqz olbsdwy fhy
lutysz "Sugw up fhy Psoyz”, elw
" Gofyz up Rezzejy” pug nhobh hy
nez enegwyw fhy " Cuuqyg Rgoay”.

Hy vuolyw fhy Guies Leti ol 1940,
bummelwolj e selwolj zhor ef fhy

Oltezoul up Lugmelwi

Ul vdly 6™ 1944 (W-Wei), fhy
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Information may be split over multiple clauses that
use references such as pronouns that may be diffi-
cult to resolve; for example, compare the “she” in both:

“Jane tried to follow her late grandmother’s recipe, but
she had not included details of the cooking times.”

and

“Jane tried to follow her late grandmother’s recipe, but
she had forgotten to buy lemons”.

Aidan Hogan

The Web

of Data







Jane tried to follow her late grandmother’s recipe, but she had not
included details of the cooking times. Who forgot to include the
cooking times: Jane or her grandmother?

Jane’s late grandmother forgot to include the cooking times in the
recipe.

Jane tried to follow her late grandmother’s recipe, but she had for-
gotten to buy lemons. Who forgot to buy lemons: Jane or her grand-
mother?

Jane forgot to buy lemons.




[Why was Jane’s grandmother late?

The information provided in the previous questions does not men-
tion why Jane’s grandmother was late. If you could provide more
context or details, I'd be happy to help you with a specific answer.




[Why was Jane’s grandmother late?

The phrase “late grandmother” typically means that Jane’s grand-
mother has passed away, rather than being late in the sense of tardi-
ness. In this context, “late” is used to indicate that the person is de-
ceased. Therefore, the sentence doesn’t provide information about
Jane’s grandmother being late for an event; it indicates that she is no
longer alive.
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Back to the future
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A PROPOSAL FOR THE
DARTMOUTH SUMMER RESEARCH PROJECT

ON ARTIFICIAL INTELLIGENCE

J. McCarthy, Dartmouth College
M. L. Minsky, Harvard University
N. Rochester, I.B. M. Corporation
- C.E. Shannon, Bell Telephone Laboratories

Augult 31, 19565




A Proposal for the

DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

We propose that a 2 month, 10 man study of artificial intelligence be
carried out during the summer of 1956 at Dartmouth College in Hanover, New
Hampshire. The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so pre-
cisely described that a machine can be made to simulate it. An attempt will be
made to find how to make machines use language, form abstractions and concepts,
solve kinds of problems now reserved for humans, and improve themselves. We
think that a significant advance can be made in one or more of these problems if

a carefully selected group of scientists work on it together for a summer.




1) Automatic Computers

If a machine can do a job, then an automatic calculator can
be programmed to simulate the machine. The speeds and
memory capacities of present computers may be insufficient
to simulate many of the higher functions of the human brain,
but the major obstacle is not lack of machine capacity, but
our inability to write programs taking full advantage of what

we have.




2) How Can a Computer be Programmed to Use a Language

It may be speculated that a large part of human thought con-

sists of manipulating words according to rules of reasoning
I uul & o

and rules of conjecture. From this point of view, :r-*ﬁ- & st
iy

forming a generalization consists of admitting a new

word and some rules whereby sentences containing it

imply and are implied by others. This idea has never

been very precisely formulated nor have examples been

worked out.




3. Neuron Nets

How can a set of (hypothetical) neurons be ar-
ranged so as to form concepts. Considerable theoret-
ical and experimental work has been done on this prob-
lem by Uttley, Rashevsky and his group, Farley and

Clark, Pitts and McCulloch, Minsky, Rochester and

Holland, and others. Partial results have been ob-

tained but the problem needs more theoretical work.



5) Self-Improvement

Probably a truly intelligent machine will carry out

activities which may best be described as self-improve-
ment. Some schemes for doing this have been propos ed
and are worth further study. It seems likely that this

question can be studied abstractly as well.




7) Randomness and Creativity Rynamumeng o5  2ma a-*ifar® sppos.

) ) -
e A - M-l T T L L

A fairly attractive and yet clearly incomplete conjecture I"“'--'*'
Tw . W

is that the difference between creative thinking and un- s

imaginative competent thinking lies in the injection of a
some randomness. The randomness must be guided by
intuition to be efficient. In other words, the educated

guess on the hunch include controlled randomness in

otherwise orderly thinking.
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RINPONIED

F1G. 1. Organization of a perceptron.

ory (2, 3,9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous system
simply acts as an intricate switching
network, where retention takes the
form of new connections, or pathways,
between centers of activity. In many

e Frank Rosenblatt: The Perceptron: A Probabilistic Model for Information
Storage and Orgranization in the Brain. Psychological Review. 65 (6):
386—408 (1958)
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Psychologist Shows Embryo

S L RE

NEW NAYY DRVICE
LEARNS BY DOING

of Computer Designed to
Read and Grow Wiser

WASHINGTON, July 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and bs .con-
scious of its existence,

The embryo—the Weather

{ |Bureau's $2,000,000 “704" com-
i |puter—learned to differentiate
i [between right and left after
i Ififty aftempts in the Navy's
i |demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a

cost of $100,000.

i

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted,.

XOR

out

ol

Source:

(0,0)

Solving XOR with a single Perceptron
Lucas Araujo.
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Eliza is a mock Rogerian psychotherapist.
The original program was described by Joseph Weizenbaum in 1966.
This implementation by Norbert Landsteiner 200S5.

ELIZA: Is something troubling you ?

YOU: Men are all alike.

ELIZA: What is the connection, do you suppose ?

YOU: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?2

YOU: Well, my boyfriend made me come here.

ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.

ELIZA: I am sorry to hear that you are depressed.

YOU: It's true. I am unhappy.

ELIZA: Can you explain what made you unhappy ?

YOU: l


https://www.masswerk.at/elizabot/eliza.html

CULTURE DESK

THE SAMANTHA TEST

By Brian Christian
December 30, 2013

Eliza was a milestone in computer understanding of natural language. Yet
Weizenbaum was more concerned with how users seemed to form an emotional
relationship with the program, which consisted of nothing more than a few
hundred lines of code. “I was startled to see how quickly and how very deeply
people conversing with DOCTOR became emotionally involved with the computer
and how unequivocally they anthropomorphized it,” he wrote. “Once my
secretary, who had watched me work on the program for many months and

therefore surely knew it to be merely a computer program, started conversing

with it. After only a few interchanges with it, she asked me to leave the room.”

He continued, “What I had not realized is that extremely short exposures to a
relatively simple computer program could induce powertul delusional thinking

. - ¥
in quite normal people.
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e Tohru Moto-Oka, Harold S. Stone: Fifth-Generation Computer Systems: A
Japanese Project. Computer 17(3): 6-13 (1984)
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896—64,896-43,264—
4096-4096-1000.

e Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton: ImageNet Classification
with Deep Convolutional Neural Networks. NIPS 2012: 1106-1114 (2012).
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Pandora’s box?
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Language Models sounds the Death Knell of
Knowledge Graphs

Kunal Suri
Optum, India
kunal suri@optum.com

Swapna Sourav Rout
Optum, India
rout.swapnasourav(@ optum.com

Abstract—Healthcare domain generates a lot of
unstructured and semi-structured text. Natural Language
processing (NLP) has been used extensively to process this data.
Deep Learning based NLP especially Large Language Models
(LLMs) such as BERT have found broad acceptance and are
used extensively for many applications. A Language Model is a
probability distribution over a word sequence. Self-supervised
Learning on a large corpus of data automatically generates deep
learning-based language models. BioBERT and Med-BERT are
language models pre-trained for the healthcare domain.
Healthecare uses typical NLP tasks such as question answering,
information extraction, named entity recognition, and search to
simplify and improve processes. However, to ensure robust
application of the results, NLI* practitioners need to normalize
and standardize them. One of the main ways of achieving
normalization and standardization is the use of Knowledge
Graphs. A Knowledge Graph captures concepts and their
relationships for a specific domain, but their creation is time-
consuming and requires manual intervention from domain
experts, which can prove expensivee SNOMED CT
(Systematized Nomenclature of Medicine - Clinical Terms),
Unified Medical Language System (UMLS), and Gene Ontology
(GO) are popular ontologies from the healthcare domain.
SNOMED CT and UMLS capture concepts such as disease,

Atul Singh
Optum, India
atul singhl8&{@optum.com

Prakhar Mishra
Optum, India

prakhar mishra29@optum.com

Rajesh Sabapathy
Optum.India
rajesh sabapathy(@uhc.com

relationships among different entities makes knowledge
graphs redundant for many applications.

This paper uses similar terms from SNOMED-CT KG and
passes them through a language model for the healthcare
domain BioRedditBERT to get a 768-dimensional dense
vector representation. The paper presents the results for
analyzing these embeddings. The experiments presented in
the paper validate that similar terms cluster together. The
paper uses simple heuristics to assign names to clusters. The
results show that the cluster names match the names in the
KG. Finally, the experiments demonstrate that the cosine
similarity of vector representation of similar terms is high and
vice versa.

Our contributions include: (1) We propose a study to
demonstrate the value and application of Large Language
Models (LLMs) in comparison to Knowledge Graph-based
approaches for the task of synonym extraction. (1) We
extensively evaluate our approach on a standard, widely
accepted dataset, and the results are encouraging.






L Hallucinations: LLMs make stuff up, sometimes convincingly.
L) Opaqueness: LLMs' results are hard to explain.

3 Intransigence: LLMs' results are hard to fix.

[} Staleness: LLMs are trained infrequently.

} Bias: LLMs can exhibit biases stemming from training corpora.
) Costs: LLMs are costly for training and inference.

3 Short tail: LLMs do not work well on rarely discussed topics.
) Sanitised: LLMs are limited for safety reasons.

? Non-determinism: LLM outputs are time/language/prompt sensitive.



[Which Turing Award winners were born in Latin America?

As of my last update in September 2021, Adolfo Guzman-Arenas
is a Turing Award winner born in Latin America. He was born in
Guatemala. He received the Turing Award in 2002 along with his
colleague Manuel Blum for their work on computational complexity
theory and the development of the concept of a “proof system.”

Please note that my information might not be current, so I recom-
mend verifying with the latest sources to confirm the most up-to-

date information about Turing Award winners from Latin America.




[Which Turing Award winners were born in Latin America?

As of my last update in September 2021, there are no Turing Award
winners who were born in Latin America. The Turing Award is
often considered the "Nobel Prize of Computer Science” and is
awarded annually by the Association for Computing Machinery
(ACM). The recipients have primarily been from the United States,
Europe, and Asia, reflecting in part the historical investment and
focus on computer science research in these regions.

However, it’s important to note that the field of computer science is
increasingly global, and outstanding contributions are being made
by researchers from all around the world, including Latin America.
While there have not been Turing Award winners born in Latin
America as of my last update, this could change in the future as the
field continues to evolve and diversify.

Please verify this information for the most current data, as it might
have changed after my last training data in September 2021.




Can you give me a SPARQL query for Wikidata to find Turing Award
winners who were born in Latin America?

Certainly!

# Turing Award winners born in Latin America
SELECT ?7person 7personlLabel 7birthPlace 7birthPlacelLabel 7award 7awardLabel WHERE {|
?person p:P166 7statement.
7statement ps:P166 wd:Q7251; pq:P582 7awardDate. # Turing Award
7person wdt:P19 7birthPlace. # Place of birth
?birthPlace wdt:P30 wd:Q12521. # Latin America
SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE]". }

}

ORDER BY 7awardDate



https://query.wikidata.org/
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LLMs + KGs










LLM KG

Hallucinations
Opaqueness:
Intransigence:
Staleness:
Bias:

Costs:

Short tail:
Sanitised:

Non-determinism:

Usability:
Factual only:

ERENE



LLM KG KG+ LLM

Hallucinations
Opaqueness:
Intransigence:
Staleness:
Bias:

Costs:

Short tail:
Sanitised:
Non-determinism:
Usability:
Factual only:

ElENE
DO
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KGs + LLMS




Integrating KGs into training objective
KG-enhanced LLM pre-training Integrating KGs into LLM inputs
Integrating KGs by fusion modules
Dynamic knowledge fusion
KG-enhanced LLMs KG-enhanced LLM inference
Retrieval-augmented knowledge fusion
KGs for LLM probing

KG-enhanced LLM interpretability
KGs for LLM analysis

y .~ LLMs as text encoders
- LLM-augmented KG emebdding |
: ~LLMs for joint text and KG embedding

: .~ LLMs as encoders
| LLM-augmented KG completion |
2 - ~LLMs as generators

~ Entity discovery

|~ Relation extraction

LLMs Meet KGs — < ;"LLM-augmented KG construction ~- Coreference resolution

[~ End-to-End KG construction

- Distilling KGs from LLMs

-Leveraging knowledge from LLMs

LLM-augmented KG to text generation |~ ;
\ < |_LLMs for constructing KG-text

aligned Corpus
. ~LLMs as entity/relation extractors

LLM-augmented KG question answering
; ~ LLMS as answer reasoners

Knowledge Representation

Reasoning

e Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, Xindong Wu:
Unifying Large Language Models and Knowledge Graphs: A Roadmap. CoRR
abs/2306.08302 (2023).



Frek-lraining MLM Post-training enhancement
asks
T P * Fine-tune PLMs with knowledge
Output
emub}llclldings [O O O O] [Q O O O] [O O O O] O O O O ___________________ * Generate knowledge-based prompts
Output layer
| Transformer laer N | During-training enhancement
. = Incorporate knowledge encoder
L -
Transformer layer2 | N ] + Insert knowledge encoding layer
t .
Transformer layer 1 + Add independent adpater
[iversines fats [epier = Modify pre-training task
Input ficts)\ [ My \ [dog\ [ is \ [eue\ [isEP)\ [ He \ [ikes\ [play\ [##ing\ [[sEP]\ Before-training enhancement
:Eiir:idings Ejceg) | Eny | | Edog I | Eis ‘ Ecute ‘EISEP] \ Ene | \ Elikes | | Eplay | Eying |E[SEP] » Expand input structure
e * Combine embeddings
Sf:gmen't E E E E E E E E; E; E L
embeddings | - | | . | | . | | - l | : ‘ l ! | | . | | . | | - | | - | | . l * Generate artificial texts
eplfjijizggings Ep Ey Ey Ian]:t laye:u E; Ey Ey Ey Eq * Knowledge masking strategy

e Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, Xindong Wu: ChatGPT
is not Enough: Enhancing Large Language Models with Knowledge Graphs
for Fact-aware Language Modeling. CoRR abs/2306.11489 (2023).
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[LLMs can make KGs more usable




Can you give me a SPARQL query for Wikidata to find Turing Award
winners who were born in Latin America?

Certainly!

# Turing Award winners born in Latin America
SELECT ?7person 7personlLabel 7birthPlace 7birthPlacelLabel 7award 7awardLabel WHERE {|
?person p:P166 7statement.
7statement ps:P166 wd:Q7251; pq:P582 7awardDate. # Turing Award
7person wdt:P19 7birthPlace. # Place of birth
?birthPlace wdt:P30 wd:Q12521. # Latin America
SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE]". }

}

ORDER BY 7awardDate



https://query.wikidata.org/
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e Neural vs. symbolic an old debate, but why not both?
e LLMs solve some tasks that KGs do (and do not)

e KGs solve some tasks that LLMs do (and do not)

e LLMs unlikely to replace KGs (and vice versa)

o LLMs + KGs = A fertile research topic

LLMs can make KGs more usable

and bring them to the masses
(LLMs will likely take the credit, but that's okay)
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