

Scaling Machine Learning on Knowledge Graphs

Keynote at EGC 2023

Axel Ngonga

January 18, 2023

Introduction

Disclaimer

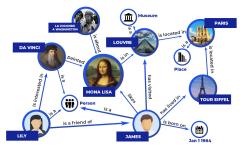
► Very incomplete

Assumes familiarity with description logics

Section 1

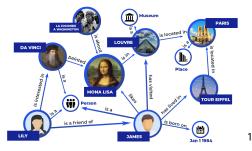
Motivation

Example



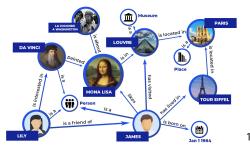
- $E^+ = \{Louvre, TourEiffel\}$
- ► $E^- = \{Lily, James\}$

Example



- $E^+ = \{Louvre, TourEiffel\}$
- ► $E^- = \{Lily, James\}$
- ▶ $\mathcal{H} = \{\exists isLocatedIn.Place, \exists isLocatedIn.{Paris}\}$

Example



- ► $E^+ = \{Louvre, TourEiffel\}$
- ▶ $E^- = \{Lily, James\}$
- ▶ $\mathcal{H} = \{\exists isLocatedIn.Place, \exists isLocatedIn.{Paris}\}$

Pros and Cons

- Pro: explainable, exploits background knowledge
- ► Contra: slow :-(

^ahttps://www. flickr.com/photos/ willwm/2065975725

^ahttps://www. flickr.com/photos/ willwm/2065975725

► What is 3+3?

^ahttps://www. flickr.com/photos/ willwm/2065975725

- ► What is 3+3?
- ► Square root of 4?

^ahttps://www. flickr.com/photos/ willwm/2065975725

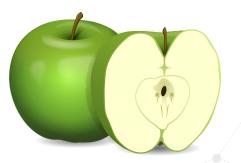
- ► What is 3+3?
- ► Square root of 4?
- ► What's the capital of France?

^ahttps://www. flickr.com/photos/ willwm/2065975725

- ► What is 3+3?
- ► Square root of 4?
- ► What's the capital of France?
- ► Close your eyes.

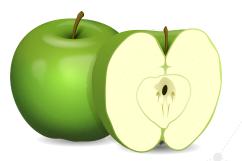
How does the brain form thoughts?

- System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious



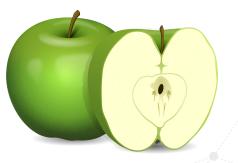
How does the brain form thoughts?

- System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious
- ► System 2
 - Logical responses
 - Resource-intensive
 - Conscious



How does the brain form thoughts?

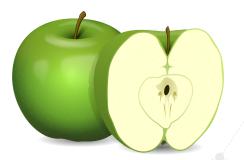
- System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious
- ► System 2
 - Logical responses
 - Resource-intensive
 - Conscious
- ► Both trainable and configurable



How does the brain form thoughts?

In a nutshell

- Multiple representations seem to be beneficial for rapid cognition
- ► Can they help improve the runtime of class expression learning?
- System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious
- System 2
 - Logical responses
 - Resource-intensive
 - Conscious
- Both trainable and configurable



Section 2

Class Expression Learning

Formal definition

- Supervised learning with background knowledge (adapted from [Lehmann and Hitzler, 2010])
- ► Given:
 - Formal logic \mathcal{L} , e.g. \mathcal{ALC}
 - ► Background knowledge in form of knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - Set of positive examples $E^+ \subseteq N_I$
 - Set of negative examples $E^- \subseteq N_I$

Class Expression Learning Formal definition

Supervised learning with background knowledge (adapted from [Lehmann and Hitzler, 2010])

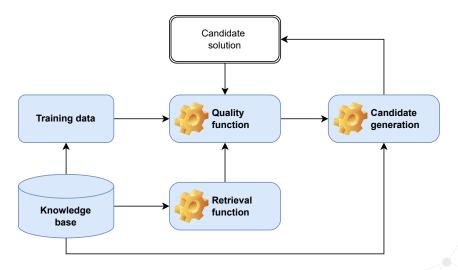
- ► Given:
 - Formal logic \mathcal{L} , e.g. \mathcal{ALC}
 - ► Background knowledge in form of knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - Set of positive examples $E^+ \subseteq N_I$
 - Set of negative examples $E^- \subseteq N_I$
- Goal: Find at least one hypothesis $H \in \mathcal{H}$ with
 - 1. *H* is a class expression in \mathcal{L} , and (ideally)
 - 2. $\forall e^+ \in E^+ : \mathcal{K} \models H(e^+)$
 - 3. $\forall e^- \in E^- : \mathcal{K} \not\models H(e^-)$

Class Expression Learning Formal definition

Supervised learning with background knowledge (adapted from [Lehmann and Hitzler, 2010])

- ► Given:
 - Formal logic \mathcal{L} , e.g. \mathcal{ALC}
 - ► Background knowledge in form of knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - Set of positive examples $E^+ \subseteq N_I$
 - Set of negative examples $E^- \subseteq N_I$
- Goal: Find at least one hypothesis $H \in \mathcal{H}$ with
 - 1. *H* is a class expression in \mathcal{L} , and (ideally)
 - 2. $\forall e^+ \in E^+ : \mathcal{K} \models H(e^+)$
 - 3. $\forall e^- \in E^- : \mathcal{K} \not\models H(e^-)$
- ► Practically, aim to find $H \in \underset{C \in \mathcal{L}}{argmax} Q(C)$ [Heindorf et al., 2022]

Common Approach



Example: $\mathcal{L} = \mathcal{ALC}$

- ► Let *C* and *D* be *ALC* concepts
- Let $r \in N_R$ be a role
- Then, the following are ALC concepts [Schmidt-Schauß and Smolka, 1991]

Syntax	Semantics
Т	$\Delta^{\mathcal{I}}$
\perp	Ø
$C \in N_C$	$\mathcal{C}^\mathcal{I} \subseteq \Delta^\mathcal{I}$
$\neg C$	$\Delta^{\mathcal{I}} ackslash \mathcal{C}^{\mathcal{I}}$
$C \sqcap D$	$\mathcal{C}^\mathcal{I} \cap \mathcal{D}^\mathcal{I}$
$C \sqcup D$	$\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$
∃r.C	$\{x \in \Delta^{\mathcal{I}} : \exists y \in C^{\mathcal{I}} \text{ with } (x, y) \in r^{\mathcal{I}}\}$
∀ r .C	$\{x\in\Delta^{\mathcal{I}}:(x,y)\in r^{\mathcal{I}} ightarrow y\in\mathcal{C}^{\mathcal{I}}\}$

Example: Refinement Operator

- ▶ Let (S, \sqsubseteq) be a space with a quasi-ordering
- ► A top-down refinement operator $\rho : S \to 2^S$ is a mapping with $\rho(x) \sqsubseteq x$ [Lehmann and Hitzler, 2010]

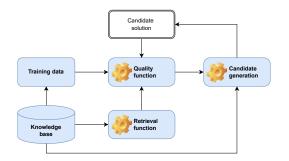
Example: Refinement Operator

- ► Let (S, \sqsubseteq) be a space with a quasi-ordering
- ► A top-down refinement operator $\rho : S \to 2^S$ is a mapping with $\rho(x) \sqsubseteq x$ [Lehmann and Hitzler, 2010]

Example

- \blacktriangleright Let S be the set of all concepts in our language $\mathcal{L} = \mathcal{EL}$
- The following operator ρ is a top-down refinement operator

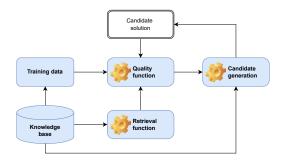
$$\blacktriangleright \rho(C) = \begin{cases} C \\ N_C \cup \{ \exists r_j . \rho(C_i) \} & \text{if } C = \top \\ \rho(D) & \text{if } D \sqsubseteq C \\ C \sqcap D & \text{with } D \in N_C \\ C \sqcap \exists r . \rho(D) & \text{with } D \in N_C \end{cases}$$



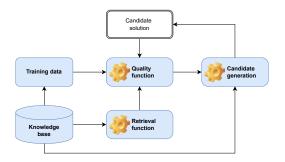
Retrieval is expensive

Ngonga: Scaling Machine Learning on Knowledge Graphs

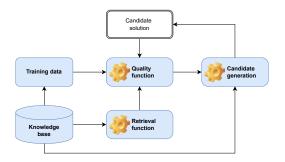
11/66



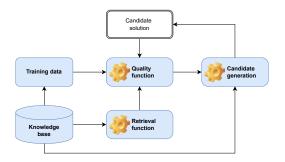
- ► Retrieval is expensive ⇒ Exploit SPARQL
- Quality functions are often myopic



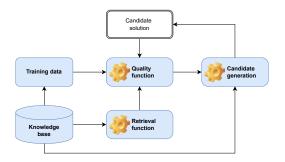
- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- Candidate generation is expensive



- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming



- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- Search space is large



- ► Retrieval is expensive ⇒ Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- ► Search space is large ⇒ Prune by length

Section 3

Representing Concepts as SPARQL

- ► Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

From \mathcal{ALC} to SPARQL

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression Graph Pattern $p = \tau(C_i, ?var)$

 $A \in N_C$?var rdf:type A.

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(C_i, ?var)$
$A \in N_C$ $\neg C$?var rdf:type A. {?var ?p ?o} UNION {?s ?p ?var}. FILTER NOT EXISTS $\{\tau(C, ?var)\}$

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(C_i, ?var)$
$A \in N_C$ $\neg C$	<pre>?var rdf:type A. {?var ?p ?o} UNION {?s ?p ?var}.</pre>
$C_1 \sqcap \ldots \sqcap C_n$	FILTER NOT EXISTS $\{\tau(C, ?var)\}$ $\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(\mathcal{C}_i, 2 extsf{var})$
$A \in N_{C}$?var rdf:type A.
$\neg \mathcal{L}$	{?var ?p ?o} UNION {?s ?p ?var}. FILTER NOT EXISTS { $ au(C, ?var)$ }
$C_1 \sqcap \ldots \sqcap C_n$	$\{\tau(C_1, 2 \operatorname{var}) \dots \tau(C_n, 2 \operatorname{var})\}$
$C_1 \sqcup \ldots \sqcup C_n$	$\{ au(C_1, 2 ext{var})\}$ UNION UNION $\{ au(C_n, 2 ext{var})\}$

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(\mathcal{C}_i, ?\texttt{var})$
$A \in N_C$ $\neg C$?var rdf:type A. {?var ?p ?o} UNION {?s ?p ?var}. FILTER NOT EXISTS { $\tau(C, ?var)$ }
$C_1 \sqcap \ldots \sqcap C_n$ $C_1 \sqcup \ldots \sqcup C_n$ $\exists r.C$	$ \{\tau(C_1, ?var) \dots \tau(C_n, ?var)\} $ $ \{\tau(C_1, ?var)\} \text{ UNION } \dots \text{ UNION } \{\tau(C_n, ?var)\} $ $ \{?var r ?s. \tau(C, ?s)\} $

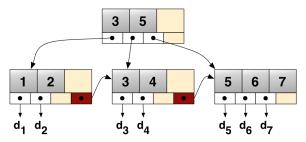
From \mathcal{ALC} to SPARQL

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(\mathcal{C}_i, ?\texttt{var})$
$A \in N_C$?var rdf:type A.
$\neg C$	{?var ?p ?o} UNION {?s ?p ?var}.
	FILTER NOT EXISTS $\{ au({\sf C}, ? {\sf var})\}$
$C_1 \sqcap \ldots \sqcap C_n$	$\{\tau(C_1, 2 \text{var}) \dots \tau(C_n, 2 \text{var})\}$
$C_1 \sqcup \ldots \sqcup C_n$	$\{ au(C_1, 2 ext{var})\}$ UNION UNION $\{ au(C_n, 2 ext{var})\}$
∃ <i>r</i> .C	{?var r ?s. τ (C,?s)}
∀ <i>r</i> .C	{ ?var r ?s0.
	{ SELECT ?var (count(?s1) AS ?cnt1)
	WHERE { ?var r ?s1. τ (C , ?s1)}
	GROUP BY ?var }
	{ SELECT ?var (count(?s2) AS ?cnt2)
	WHERE { ?var r ?s2 .}
	GROUP BY ?var }
	FILTER (?cnt1 = ?cnt2) }

Representing Concepts as SPARQL Storage Solutions

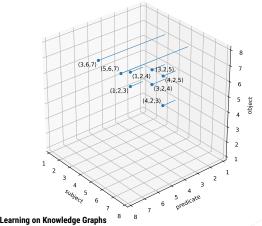
- Important difference are indexing data structures
- ► Typical indexes include
 - Resource index, e.g., a hash table
 - ► Triple index, e.g., a B⁺ tree



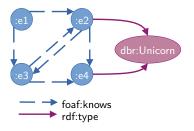
TENTRIS: Idea

Idea [Bigerl et al., 2020]

- Exploit tensor representation to accelerate guerying
- Devise data structure to accommodate rapid guerying



From RDF to Tensors



From RDF to Tensors

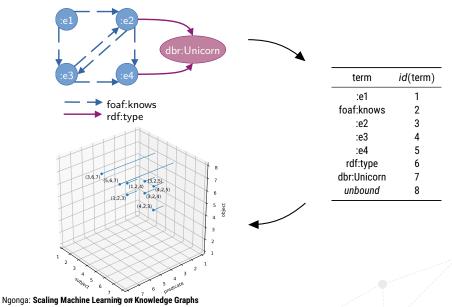
:e1 dbr:Unicorn	term	id(term)
	:e1	1
foaf:knows	foaf:knows	2
> rdf:type	:e2	3
	:e3	4
	:e4	5
	rdf:type	6
	dbr:Unicorn	7
	unbound	8

From RDF to Tensors

:e1 :e3		e2 e4	dbr:Ui	nicorn			term	id(term)
		_					:e1	1
		f:knows					foaf:knows	2
	rdf:	type					:e2	3
							:e3	4
		id(n)	id(a)				:e4	5
	id(s)	id(p)	id(o)				rdf:type	6
	1	2	3				dbr:Unicorn	7
	1	2	4				unbound	8
	3	2	4			/		
	3	2	5					
	4	2	3		-			
	4	2	5					
	3	6	7					
	5	6	7					

Ngonga: Scaling Machine Learning on Knowledge Graphs

From RDF to Tensors



16/66

TENTRIS: Data Model

• Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$

TENTRIS: Data Model

- Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$
 - ► $\mathbf{K}_1 = \cdots = \mathbf{K}_n \subset \mathbb{N}$

TENTRIS: Data Model

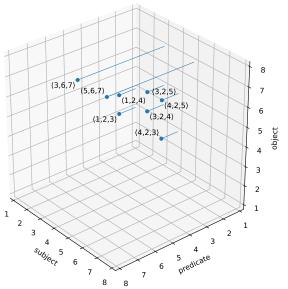
- Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$
 - $\blacktriangleright \ \mathbf{K}_1 = \cdots = \mathbf{K}_n \subset \mathbb{N}$
 - $\blacktriangleright \ \ \mathbb B$ or $\mathbb N$ as co-domain

Representing Concepts as SPARQL TENTRIS: Data Model

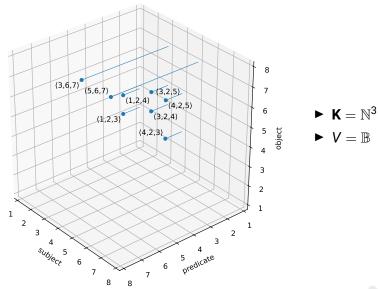
• Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$

- $\blacktriangleright \ \textbf{K}_1 = \dots = \textbf{K}_n \subset \mathbb{N}$
- $\blacktriangleright \ \ \mathbb B$ or $\mathbb N$ as co-domain
- ▶ $\mathbf{k} \in \mathbf{K}$ is a key with key parts $\langle \mathbf{k}_1, \dots, \mathbf{k}_n \rangle$
- Values v in a tensor are accessed in array style, e.g., $T[\mathbf{k}] = v$

TENTRIS: Data Model



TENTRIS: Data Model



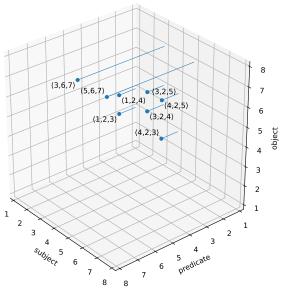
► $\mathbf{K} = \mathbb{N}^3$

 \blacktriangleright V = \mathbb{B}

► T[(3, 6, 7)] = 1

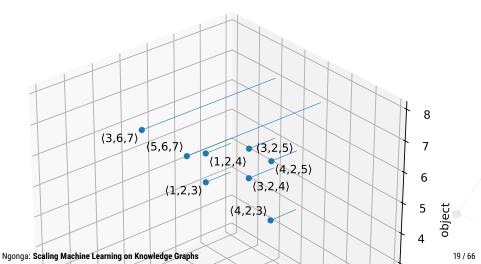
 $\blacktriangleright T[\langle 3, 6, 3 \rangle] = 0$

TENTRIS: Data Model



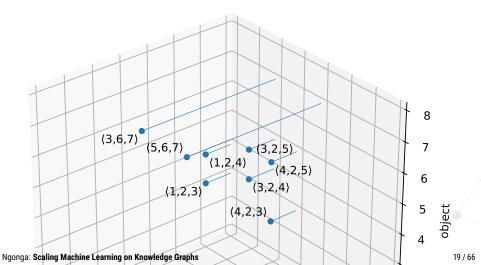
TENTRIS: Data Model

Slicing selects portion of T, e.g., $T^{(1)} := T[1, 2, :]$ is order-1 tensor



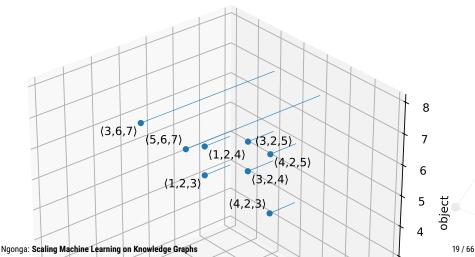
TENTRIS: Data Model

- Slicing selects portion of T, e.g., $T^{(1)} := T[1, 2, :]$ is order-1 tensor
- ► For our example, *T*[1, 2, :] = [0, 0, 1, 1, 0, 0, 0, 0]



TENTRIS: Data Model

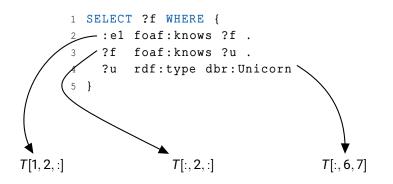
- Slicing selects portion of T, e.g., $T^{(1)} := T[1, 2, :]$ is order-1 tensor
- ► For our example, *T*[1, 2, :] = [0, 0, 1, 1, 0, 0, 0, 0]
- Slices can be joined via Einstein summation [Barr, 1989]



TENTRIS-Einstein Summation

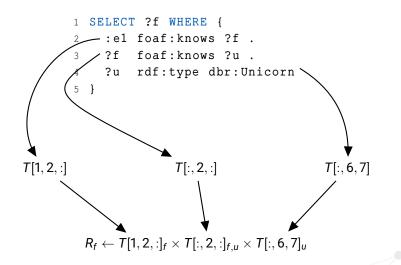
1 SELECT ?f WHERE {
2 :el foaf:knows ?f.
3 ?f foaf:knows ?u.
4 ?u rdf:type dbr:Unicorn
5 }

TENTRIS-Einstein Summation



Ngonga: Scaling Machine Learning on Knowledge Graphs

TENTRIS-Einstein Summation



TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array}
ight.$$

Representing Concepts as SPARQL TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array}
ight.$$

• BGP
$$B = \{B^{(1)}, ..., B^{(r)}\}$$
 is given by

$$T'_{\langle l \in U \rangle} \leftarrow \bigvee_{i} T[\mathbf{k}^{\mathcal{B}^{(i)}}]_{\langle l \in \mathcal{B}^{(i)} | l \in U \rangle}$$

Ngonga: Scaling Machine Learning on Knowledge Graphs

Representing Concepts as SPARQL TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array}
ight.$$

• BGP
$$B = \{B^{(1)}, ..., B^{(r)}\}$$
 is given by

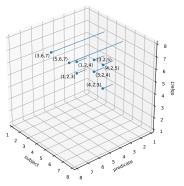
$$T'_{\langle l \in U \rangle} \leftarrow \bigvee_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

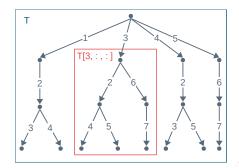
• The projection $\Pi_{U'}(B(g))$ with $U' \subseteq U$ is given by

$$T''_{\langle l \in U' \rangle} \leftarrow \bigotimes_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

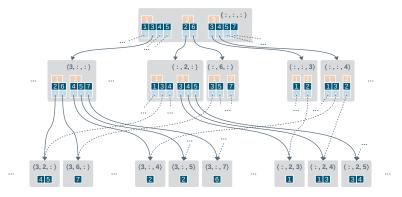
Representing Concepts as SPARQL TENTRIS: Hypertrie

- Query for any tensor slice efficiently
- Allow for efficient querying



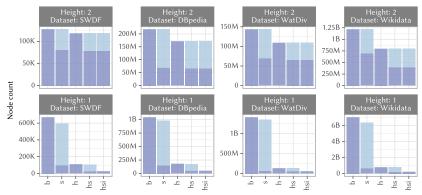


TENTRIS: Hypertrie



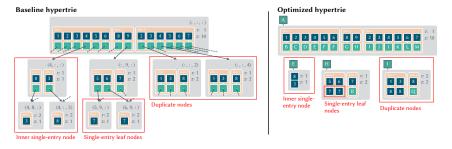
- Query for any tensor slice efficiently
- Storage bound is reduced from O(d! ⋅ d ⋅ z(h)) for all collation orders to O(2^{d-1} ⋅ d ⋅ z(h))

TENTRIS: Hypertrie

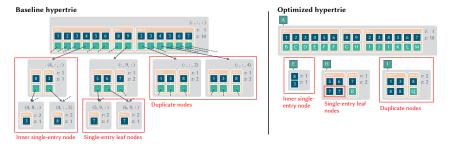


- Hypertrie topology seems sparse
- Compression to improve space, loading and query times [Bigerl et al., 2022]

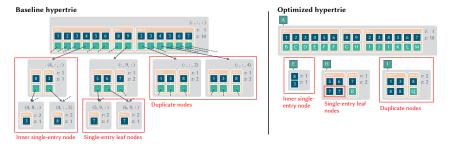
TENTRIS: Compressed Hypertrie



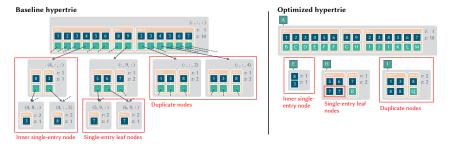
Compress data based on local and global node topology



- Compress data based on local and global node topology
- ► 3 compression approaches
 - 1. Remove duplicates via hashing (global)



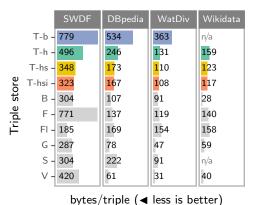
- Compress data based on local and global node topology
- ► 3 compression approaches
 - 1. Remove duplicates via hashing (global)
 - 2. Single-entry inner nodes (local) store sub-hypertries directly

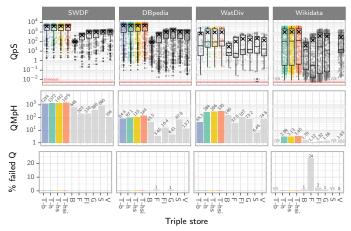


- Compress data based on local and global node topology
- ► 3 compression approaches
 - 1. Remove duplicates via hashing (global)
 - 2. Single-entry inner nodes (local) store sub-hypertries directly
 - 3. Single-entry leaf nodes are eliminated via in-place storage (local)

- Comparison with state-of-the-art approaches
- ► Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
- Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)

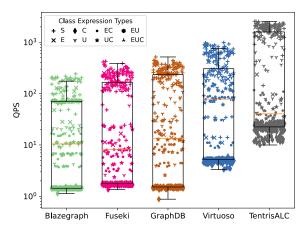
- Comparison with state-of-the-art approaches
- ► Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
- Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)





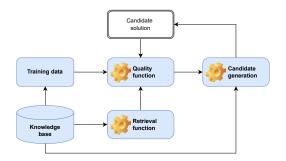
- Better runtimes on all datasets
- Can operate on very large datasets (no time-outs)

TENTRIS: Carcinogenesis



- ► Comparison on supervised machine learning tasks in *ALC*
- Better runtimes on all datasets considered

Learning problem Challenges

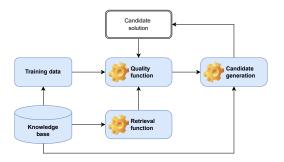


- ✓ Retrieval is expensive \Rightarrow Exploit SPARQL
- Quality functions are often myopic

Ngonga: Scaling Machine Learning on Knowledge Graphs

29/66

Learning problem Challenges



- ✓ Retrieval is expensive \Rightarrow Exploit SPARQL
- ► Quality functions are often myopic ⇒ Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- ► Search space is large ⇒ Prune by length

Section 4

Improving Quality Functions

Ngonga: Scaling Machine Learning on Knowledge Graphs

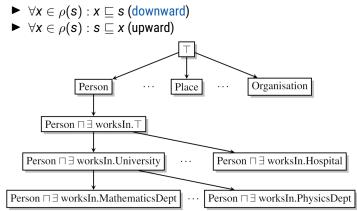
30/66

Improving Quality Functions Refinement Operators

- ► Implement informed search in space S of all concepts with partial ordering ⊑
- Refinement operator $\rho : S \to 2^S$ with
 - $\forall x \in \rho(s) : x \sqsubseteq s \text{ (downward)}$
 - $\forall x \in \rho(s) : s \sqsubseteq x \text{ (upward)}$

Improving Quality Functions Refinement Operators

- ► Implement informed search in space S of all concepts with partial ordering ⊑
- Refinement operator $\rho : S \to 2^S$ with



Improving Quality Functions Quality Functions – OCEL

- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree

Improving Quality Functions Quality Functions – OCEL

- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree
- ► Accuracy and accuracy gain of a concept C are defined as

$$\operatorname{acc}(\mathcal{C}) = 1 - rac{|\mathcal{E}^+ \setminus \mathcal{R}(\mathcal{C})| + |\mathcal{R}(\mathcal{C}) \cap \mathcal{E}^-|}{|\mathcal{E}|}$$
 $\operatorname{acc_gain}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) - \operatorname{acc}(\mathcal{C}')$

Improving Quality Functions Quality Functions – OCEL

- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree
- ► Accuracy and accuracy gain of a concept C are defined as

$$\operatorname{acc}(\mathcal{C}) = 1 - rac{|E^+ \setminus R(\mathcal{C})| + |R(\mathcal{C}) \cap E^-|}{|E|}$$
 $\operatorname{acc_gain}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) - \operatorname{acc}(\mathcal{C}')$

► The score is given by

$$\operatorname{score}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) + \alpha \cdot \operatorname{acc}_{\operatorname{gain}}(\mathcal{C}) - \beta \cdot |\mathcal{C}| \quad (\alpha, \beta \ge \mathbf{0}),$$

where $\alpha = 0.5$ and $\beta = 0.02$ are typical default values.

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\begin{aligned} \operatorname{acc}_{c}(C,t) &= \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right) \\ \operatorname{acc_gain}_{c}(C) &= \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t) \end{aligned}$$

Ngonga: Scaling Machine Learning on Knowledge Graphs

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) = $\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$ ($\alpha, \beta \ge 0$) where typical values are $\alpha = 0.3$ and $\beta = 0.05$.

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) = $\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$ ($\alpha, \beta \ge 0$) where typical values are $\alpha = 0.3$ and $\beta = 0.05$.

Problem: Myopia

Current metrics do not consider future accuracy of concepts

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

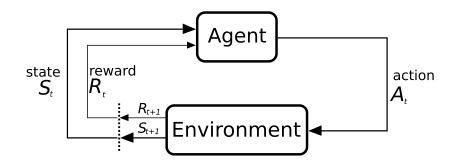
$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) =
$$\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$$
 ($\alpha, \beta \ge 0$)
where typical values are $\alpha = 0.3$ and $\beta = 0.05$.

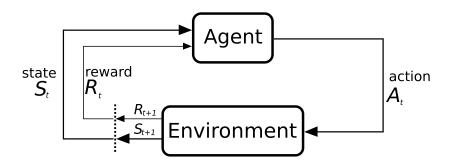
Problem: Myopia

- Current metrics do not consider future accuracy of concepts
- Optimize for cumulative discounted future rewards [Demir and Ngonga Ngomo, 2021]

Reinforcement Learning



Reinforcement Learning



- $S_t = \text{Concept } C$ $R_t = \begin{cases} 1 & \text{if } \operatorname{acc}(C) = 1 \\ 0 & \text{else} \end{cases}$
- ► A_t = Transition from concept C to some concept D

Reinforcement Learning – Q Function

 $G_t = \sum_{i=0}^n \gamma^i R_{t+i}$

Reinforcement Learning – Q Function

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function $Q_{\pi} : S \times A \rightarrow \mathbb{R}$ with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} \right]$$

Ngonga: Scaling Machine Learning on Knowledge Graphs

Reinforcement Learning – Q Function

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function $Q_{\pi} : S \times A \rightarrow \mathbb{R}$ with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} \right]$$

• Observation: Infinite number of states as search space is infinite

Reinforcement Learning – Q Function

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function $Q_{\pi} : S \times A \rightarrow \mathbb{R}$ with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a}
ight]$$

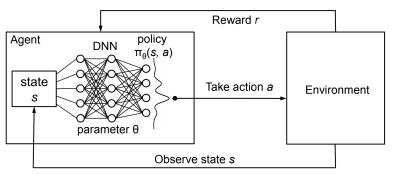
- Observation: Infinite number of states as search space is infinite
- ► Apply deep Q learning with target network [Mnih et al., 2015]

$$\mathcal{L}(\Theta_i) = \mathbb{E}_{(s,a,R,s') \sim U(\mathcal{D})} \left[\left(R + \gamma \max_{\mathbf{a}' \in \mathcal{A}(\mathbf{s}')} Q(s',a';\Theta_i^-) - Q(s,a;\Theta_i) \right)^2 \right]$$

Reinforcement Learning – DRILL

► Convolutional deep Q-Network with $\Theta = [\omega, \mathbf{W}, \mathbf{H}]$

 $\varphi([\mathbf{s},\mathbf{s}',\mathbf{e}_{+},\mathbf{e}_{-}];\Theta) = \textit{ReLU}\Big(\textit{vec}(\textit{ReLU}[\Psi([\mathbf{s},\mathbf{s}',\mathbf{e}_{+},\mathbf{e}_{-}])*\omega])\cdot\mathbf{W}\Big)\cdot\mathbf{H}$



Source: [Mao et al., 2016]

Improving Quality Functions TransE

Assumptions

- Resources and properties are vectors
- If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$

TransE

- Assumptions
 - Resources and properties are vectors
 - If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(\vec{s}+\vec{p},\vec{o})$$

TransE

- Assumptions
 - Resources and properties are vectors
 - If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(ec{s} + ec{p}, ec{o})$$

Problem: Loss function converges to trivial solution

TransE

- Assumptions
 - Resources and properties are vectors
 - If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o) \in E} d(ec{s} + ec{p}, ec{o})$$

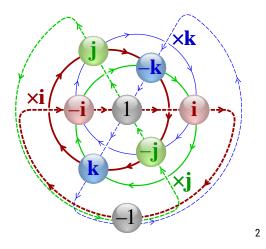
- Problem: Loss function converges to trivial solution
- Solution: Add negative information and margin $\gamma \in \mathbb{R}^+$
- Loss is now

$$L = \sum_{(s,p,o)\in E} \sum_{(s',p,o')\in S'(s,p,o)} [\gamma + d(\vec{s} + \vec{p}, \vec{o}) - d(\vec{s'} + \vec{p}, \vec{o'})]_+$$

where

Ngonga: Scaling Machine Learning on Knowledge Graphs

Quaternions: \mathbb{H}



²https://en.wikipedia.org/wiki/Quaternion#/media/File: Cayley_Q8_quaternion_multiplication_graph.svg

Ngonga: Scaling Machine Learning on Knowledge Graphs

Quaternions: \mathbb{H}

- ► Can define embeddings in this space: QMult [Demir et al., 2021]
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$, where

Quaternions: \mathbb{H}

- ► Can define embeddings in this space: QMult [Demir et al., 2021]
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$, where
 - \otimes is the Hamiltonian product ($\mathbb{H} \times \mathbb{H} \to \mathbb{H}$)
 - is the quaternion inner product ($\mathbb{H} \times \mathbb{H} \to \mathbb{R}$)

Quaternions: \mathbb{H}

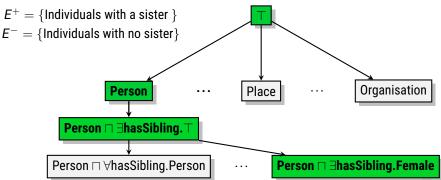
- ► Can define embeddings in this space: QMult [Demir et al., 2021]
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$, where
 - \otimes is the Hamiltonian product ($\mathbb{H} \times \mathbb{H} \to \mathbb{H}$)
 - is the quaternion inner product ($\mathbb{H} \times \mathbb{H} \to \mathbb{R}$)
 - ► Loss function over training data Γ with $Y_{spo} \in \{-1, +1\}$ is given by $\sum_{(s,p,o)\in\Gamma} \log(1 + \exp(-Y_{spo}\varphi(s,p,o)))$

Quaternions: $\mathbb H$

- ► Can define embeddings in this space: QMult [Demir et al., 2021]
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}) \cdot \vec{o}$, where
 - \otimes is the Hamiltonian product ($\mathbb{H} \times \mathbb{H} \to \mathbb{H}$)
 - is the quaternion inner product ($\mathbb{H} \times \mathbb{H} \to \mathbb{R}$)
 - ► Loss function over training data Γ with $Y_{spo} \in \{-1, +1\}$ is given by $\sum_{(s,p,o)\in\Gamma} \log(1 + \exp(-Y_{spo}\varphi(s,p,o)))$
- Similar construction for octonions

Unsupervised Learning – Training Data

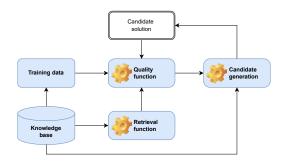
- ► Follow refinement path at random
- ► Select concept C
- Set $E^+ \subseteq R(C)$ and $E^- \cap R(C) = \emptyset$



Improving Quality Functions Evaluation

- Used Family und BioPax datasets
- ► Evaluation on 114 learning problems

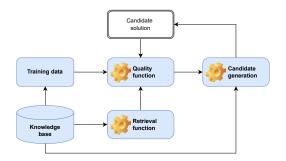
Approaches	F1	Acc	Runtime	# Exp.
CELOE	$.995\pm0.03$	$.993 \pm 0.04$	7.5 ± 1.1	$\textbf{33.5} \pm \textbf{129.3}$
OCEL	*	1.00 ± 0.00	11.0 ± 1.4	$\textbf{2271.6} \pm \textbf{1269.2}$
ELTL	$.990\pm0.06$	$.984 \pm 0.09$	8.1 ± 1.6	*
DRILL	1.00 ± 0.00	1.00 ± 0.00	1.1 ± 0.5	$\textbf{9.88} \pm \textbf{38.5}$



✓ Retrieval is expensive

Ngonga: Scaling Machine Learning on Knowledge Graphs

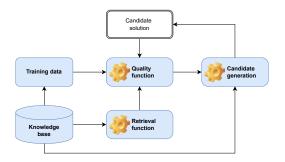
42/66



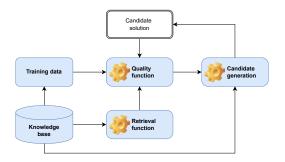
✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic

Ngonga: Scaling Machine Learning on Knowledge Graphs

42/66



- ✓ Retrieval is expensive \Rightarrow Exploit SPARQL
- \checkmark Quality functions are often myopic \Rightarrow Exploit embeddings
- Candidate generation is expensive



- ✓ Retrieval is expensive \Rightarrow Exploit SPARQL
- Quality functions are often myopic \Rightarrow Exploit embeddings
- ► Candidate generation is expensive ⇒ Exploit priming
- ► Search space is large ⇒ Prune by length

Section 5

Learning with Priming

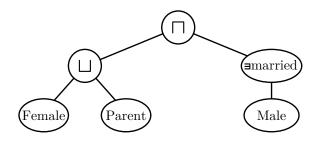
Ngonga: Scaling Machine Learning on Knowledge Graphs

43/66

Learning with Priming

EVOLEARNER - Idea

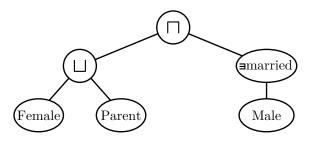
▶ Represent concepts as trees, e.g., (Female ⊔ Parent) □ ∃married.Male



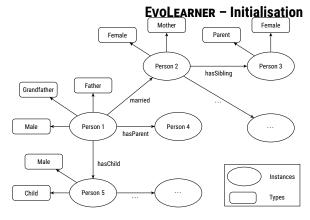
Learning with Priming

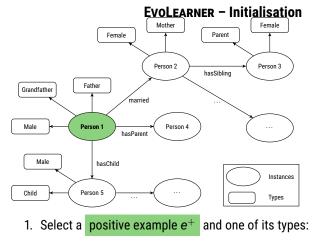
EvoLearner – Idea

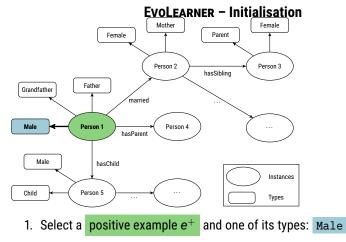
- ▶ Represent concepts as trees, e.g., (Female ⊔ Parent) □ ∃married.Male
- ► Learn in evolutionary fashion using genetic programming
- Exploit priming effect (remember the green apple)
- Intuition: An individual is an overlap several concepts [Heindorf et al., 2022]

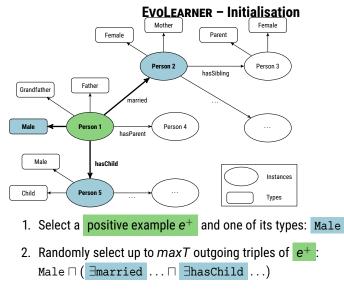


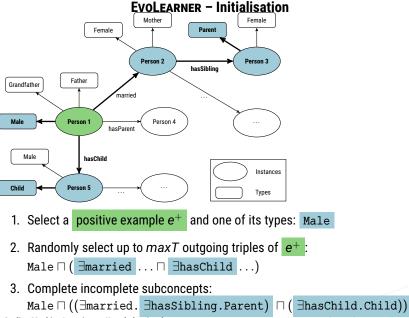
Learning with Priming









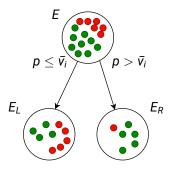


Ngonga: Scaling Machine Learning on Knowledge Graphs

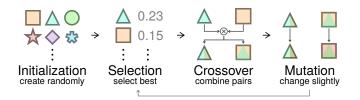
EvoLearner – Data Properties

- Given a data property d from the knowledge base K and a set E of positive and negative examples
- We precompute up to k splits of the form $d \leq \bar{v}_i$ per data property
- Splits are computed to maximize information gain:

$$IG(E,\bar{v}_i) = H(E) - H(E|\bar{v}_i) = H(E) - \left(\frac{|E_L|}{|E|}H(E_L) + \frac{|E_R|}{|E|}H(E_R)\right)$$



Evolearner - Training

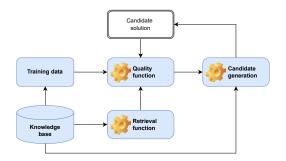


EVOLEARNER - Evaluation

Learn. Problem	EvoLearner (ours)	DL-Learner (CELOE)	DL-Learner (OCEL)	Aleph	SPaCEL
Carcinogenesis	0.70 ± 0.12	$\textbf{0.71} \pm \textbf{0.01}$	no results	$\textbf{0.46} \pm \textbf{0.12}$	$\textbf{0.60} \pm \textbf{0.08}$
Family	1.00 ± 0.01	$\textbf{0.98} \pm \textbf{0.05}$	$\textbf{1.00} \pm \textbf{0.00}$	_	$\textbf{0.97} \pm \textbf{0.11}$
Hepatitis	$\textbf{0.79} \pm \textbf{0.08}$	$\textbf{0.61} \pm \textbf{0.03}$	no results	$\textbf{0.38} \pm \textbf{0.12}$	no results
Lymphography	$\textbf{0.84} \pm \textbf{0.09}$	$\textbf{0.78} \pm \textbf{0.10}$	$\textbf{0.85} \pm \textbf{0.10}$	$\textbf{0.84} \pm \textbf{0.09}$	$\textbf{0.75} \pm \textbf{0.13}$
Mammographic	$\textbf{0.81} \pm \textbf{0.06}$	$\textbf{0.64} \pm \textbf{0.01}$	$\textbf{0.78} \pm \textbf{0.08}$	$\textbf{0.48} \pm \textbf{0.08}$	$\textbf{0.64} \pm \textbf{0.06}$
Mutagenesis	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.93} \pm \textbf{0.14}$	timeout	$\textbf{0.43} \pm \textbf{0.47}$	$\textbf{1.00} \pm \textbf{0.00}$
NCTRER	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.74} \pm \textbf{0.01}$	$\textbf{0.94} \pm \textbf{0.06}$	$\textbf{0.71} \pm \textbf{0.18}$	$\textbf{1.00} \pm \textbf{0.00}$
Premier League	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.99} \pm \textbf{0.04}$	$\textbf{0.81} \pm \textbf{0.13}$	$\textbf{0.94} \pm \textbf{0.11}$	$\textbf{0.98} \pm \textbf{0.04}$
Pyrimidine	$\textbf{0.91} \pm \textbf{0.14}$	$\textbf{0.84} \pm \textbf{0.15}$	$\textbf{0.84} \pm \textbf{0.22}$	$\textbf{0.90} \pm \textbf{0.32}$	$\textbf{0.86} \pm \textbf{0.29}$

EVOLEARNER - Ablation Study

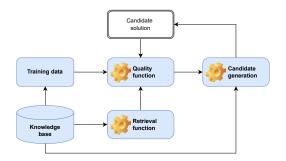
Learning Problem	EvoLearner (ours)	Without Rand. Walk Init.	Without Data Properties	Without Both
Carcinogenesis	$\textbf{0.70} \pm \textbf{0.12}$	$\textbf{0.60} \pm \textbf{0.21}$	$\textbf{0.63} \pm \textbf{0.13}$	$\textbf{0.62}\pm\textbf{0.13}$
Family	1.00 ± 0.01	$\textbf{0.87} \pm \textbf{0.13}$	-	$\textbf{0.86} \pm \textbf{0.14}$
Hepatitis	$\textbf{0.79} \pm \textbf{0.08}$	$\textbf{0.67} \pm \textbf{0.15}$	$\textbf{0.46} \pm \textbf{0.14}$	$\textbf{0.47} \pm \textbf{0.13}$
Lymphography	$\textbf{0.84} \pm \textbf{0.09}$	$\textbf{0.83} \pm \textbf{0.11}$	-	$\textbf{0.83} \pm \textbf{0.09}$
Mammographic	$\textbf{0.81} \pm \textbf{0.06}$	$\textbf{0.78} \pm \textbf{0.08}$	$\textbf{0.77} \pm \textbf{0.07}$	$\textbf{0.75} \pm \textbf{0.06}$
Mutagenesis	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.44} \pm \textbf{0.48}$	$\textbf{0.50} \pm \textbf{0.51}$
NCTRER	1.00 ± 0.00	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.74} \pm \textbf{0.05}$	$\textbf{0.75} \pm \textbf{0.05}$
Premier League	1.00 ± 0.00	$\textbf{0.98} \pm \textbf{0.04}$	$\textbf{0.50} \pm \textbf{0.23}$	$\textbf{0.50} \pm \textbf{0.22}$
Pyrimidine	$\textbf{0.91} \pm \textbf{0.14}$	$\textbf{0.83} \pm \textbf{0.22}$	0.67 ± 0.00	$\textbf{0.67} \pm \textbf{0.00}$



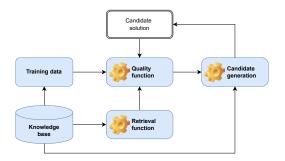
✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic

Ngonga: Scaling Machine Learning on Knowledge Graphs

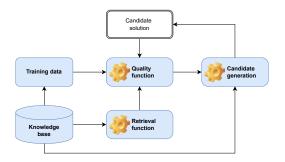
50/66



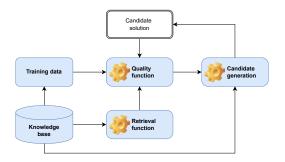
✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic ⇒ Exploit embeddings
 ✓ Candidate generation is expensive



✓ Retrieval is expensive ⇒ Exploit SPARQL
 ✓ Quality functions are often myopic ⇒ Exploit embeddings
 ✓ Candidate generation is expensive ⇒ Exploit priming



- ✓ Retrieval is expensive \Rightarrow Exploit SPARQL
- \checkmark Candidate generation is expensive \Rightarrow Exploit priming
- Search space is large



- ✓ Retrieval is expensive \Rightarrow Exploit SPARQL
- ✓ Quality functions are often myopic \Rightarrow Exploit embeddings
- \checkmark Candidate generation is expensive \Rightarrow Exploit priming
- ► Search space is large ⇒ Prune by length

Section 6

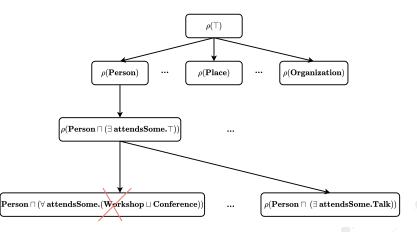
CLIP

Ngonga: Scaling Machine Learning on Knowledge Graphs

51/66

Approach

- Idea: Prune horizontally by
- predicting target concept length and
- discarding longer refinements



Concept Lengths

Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)

Concept Lengths

- Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)
- $length(\neg C) = 1 + length(C)$, for all concepts C

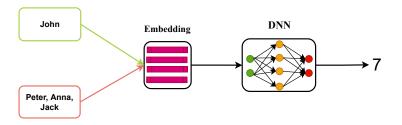
Concept Lengths

- Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)
- $length(\neg C) = 1 + length(C)$, for all concepts C
- ► $length(\exists r.C) = length(\forall r.C) = 2 + length(C)$, for all concepts C

Concept Lengths

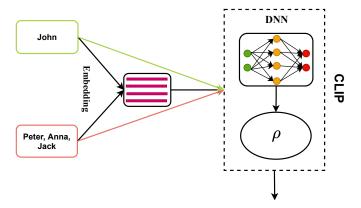
- Iength(A) = length(⊤) = length(⊥) = 1 (if A is an atomic concept)
- $length(\neg C) = 1 + length(C)$, for all concepts C
- ► $length(\exists r.C) = length(\forall r.C) = 2 + length(C)$, for all concepts C
- Iength(C ⊔ D) = length(C ⊓ D) = 1 + length(C) + length(D), for all concepts C and D.

Concept Length Prediction



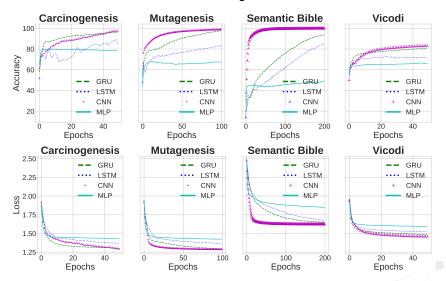
- ► Input: positive and negative examples
- Output: length of the target concept

Concept Learning

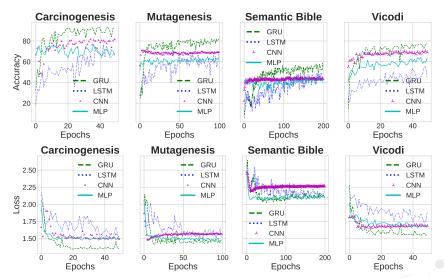


Male $\square \exists$ hasParent.(\exists hasChild.Female)

Training



Validation



Network Architecture

		Carcinogenesis Mutagenesis				s				
Metric	LSTM	GRU	CNN	MLP	RM	LSTM	GRU	CNN	MLP	RM
Train. Acc.	0.89	0.96	0.97	0.80	0.48	0.83	0.97	0.98	0.68	0.33
Val. Acc.	0.76	0.93	0.82	0.77	0.48	0.70	0.82	0.71	0.65	0.35
Test Acc.	0.92	0.95	0.84	0.80	0.49	0.78	0.85	0.70	0.68	0.33
Test F1	0.88	0.92	0.71	0.59	0.33	0.76	0.85	0.70	0.67	0.32
		Se	mantic I	Bible			١	/icodi		
Metric	LSTM	Se GRU	mantic I CNN	Bible MLP	RM	LSTM	\ GRU	/icodi CNN	MLP	RM
Metric Train. Acc.	LSTM 0.85				RM 0.33	LSTM			MLP 0.66	RM 0.28
		GRU	CNN	MLP			GRU	CNN		
Train. Acc.	0.85	GRU 0.93	CNN 0.99	MLP 0.68	0.33	0.73	GRU 0.81	CNN 0.83	0.66	0.28

Comparison with SOTA

		Carcinogenesis		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.78} \pm \textbf{0.27}$	$\textbf{0.89} \pm \textbf{0.31}$	$\textbf{0.58} \pm \textbf{0.46}$	0.99 ± 0.00
F1↑	$\textbf{0.62} \pm \textbf{0.46}$	_	$\textbf{0.51} \pm \textbf{0.47}$	$\textbf{0.96}*\pm0.10$
Runtime (min) \downarrow	$\textbf{0.93} \pm \textbf{0.94}$	$\textbf{3.01} \pm \textbf{0.72}$	$\textbf{0.75} \pm \textbf{0.07}$	$\textbf{0.10}*\pm0.09$
Length \downarrow	$\textbf{1.69} \pm 0.89$	$\textbf{7.81} \pm \textbf{6.88}$	$\textbf{1.04} \pm \textbf{0.39}$	2.00 ± 1.28
		Mutagenesis		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.99} \pm \textbf{0.00}$	$\textbf{0.71} \pm \textbf{0.45}$	$\textbf{0.37} \pm \textbf{0.43}$	0.99 ± 0.00
F1 ↑	$\textbf{0.81} \pm \textbf{0.35}$	_	$\textbf{0.29} \pm \textbf{0.40}$	$0.93 * \pm 0.18$
Runtime (min) \downarrow	$\textbf{0.70} \pm \textbf{0.77}$	$\textbf{2.39} \pm \textbf{0.18}$	$\textbf{0.29} \pm \textbf{0.16}$	0.07*±0.05
Length \downarrow	$\textbf{2.79} \pm \textbf{1.17}$	12.63 ± 7.03	1.10 ± 0.81	2.20 ± 1.16
		Semantic Bible		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.99} \pm \textbf{0.02}$	$\textbf{0.66} \pm \textbf{0.47}$	0.59 ± 0.37	0.99 ± 0.00
F1 ↑	$\textbf{0.97} \pm \textbf{0.10}$	-	$\textbf{0.57} \pm \textbf{0.38}$	0.98 ± 0.05
Runtime (min) \downarrow	$\textbf{0.47} \pm \textbf{0.80}$	$\textbf{22.15} \pm \textbf{96.55}$	$\textbf{0.09} \pm \textbf{0.07}$	$0.06* \pm 0.05$
Length \downarrow	$\textbf{3.85} \pm \textbf{2.44}$	$\textbf{9.54} \pm \textbf{5.73}$	$\textbf{1.38} \pm \textbf{1.76}$	2.52 * ± 1.26
		Vicodi		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.29} \pm \textbf{0.44}$	$\textbf{0.25} \pm \textbf{0.43}$	$\textbf{0.28} \pm \textbf{0.44}$	0.99 *±0.00
F1↑	$\textbf{0.25} \pm \textbf{0.44}$	-	$\textbf{0.25} \pm \textbf{0.44}$	0.97 *±0.09
Runtime (min) \downarrow	1.30 ± 0.71	$\textbf{4.78} \pm \textbf{1.12}$	$\textbf{1.81} \pm \textbf{0.46}$	0 .16* ± 0.12
Length ↓	10.79 ± 6.30	11.54 ± 6.00	11.14 ± 6.11	1.68* ± 0.98

Ngonga: Scaling Machine Learning on Knowledge Graphs

Section 7

Summary

Ngonga: Scaling Machine Learning on Knowledge Graphs

60/66

Summary Open Questions

- Tensors: Variable ordering? Compressed data structure?
- RL: Reduce training costs? Hyperparameters? Embeddings?
- Evolutionary learning: Myopia? Runtime? Continuous data?

Summary

Open Questions

Holy Grail

- Can the selection of representations be automated?
- LEMUR and ENEXA
- Tensors: Variable ordering? Compressed data structure?
- RL: Reduce training costs? Hyperparameters? Embeddings?
- Evolutionary learning: Myopia? Runtime? Continuous data?

Summary Thank You!

Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N'Dah Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif, Muhammed Saleem, and many more

Thank You! Questions?

- https://dice-research.org
- https://twitter.com/DiceResearch
- https://twitter.com/NgongaAxel

References I

[Barr, 1989] Barr, A. H. (1989).

The einstein summation notation: Introduction and extensions. SIGGRAPH 89 Course notes# 30 on Topics in Physically-Based Modeling, pages J1–J12.

[Bigerl et al., 2020] Bigerl, A., Conrads, F., Behning, C., Sherif, M. A., Saleem, M., and Ngonga Ngomo, A.-C. (2020). Tentris-a tensor-based triple store.

In International Semantic Web Conference, pages 56-73. Springer.

[Bigerl et al., 2022] Bigerl, A., Conrads, L., Behning, C., Saleem, M., and Ngonga Ngomo, A.-C. (2022).

Hashing the hypertrie: Space-and time-efficient indexing for sparql in tensors.

In International Semantic Web Conference, pages 57-73. Springer.

References II

 [Bin et al., 2016] Bin, S., Bühmann, L., Lehmann, J., and Ngonga Ngomo, A.-C. (2016).
 Towards sparql-based induction for large-scale rdf data sets. In *ECAI 2016*, pages 1551–1552. IOS Press.

[Demir et al., 2021] Demir, C., Moussallem, D., Heindorf, S., and Ngomo, A.-C. N. (2021).

Convolutional hypercomplex embeddings for link prediction. In Asian Conference on Machine Learning, pages 656–671. PMLR.

[Demir and Ngonga Ngomo, 2021] Demir, C. and Ngonga Ngomo, A.-C. (2021).

Drill-deep reinforcement learning for refinement operators in *alc*. *arXiv preprint arXiv:2106.15373*.

References III

 [Heindorf et al., 2022] Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Golani, V. N., Demir, C., and Ngonga Ngomo, A.-C. (2022).
 Evolearner: Learning description logics with evolutionary algorithms. In *Proceedings of the ACM Web Conference 2022*, pages 818–828.

[Kahneman, 2011] Kahneman, D. (2011).

Thinking, fast and slow.

Macmillan.

[Lehmann and Hitzler, 2010] Lehmann, J. and Hitzler, P. (2010). Concept learning in description logics using refinement operators. *Machine Learning*, 78(1):203–250.

References IV

[Mao et al., 2016] Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016).
Resource management with deep reinforcement learning.
In Proceedings of the 15th ACM workshop on hot topics in networks,

pages 50-56.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015).
Human-level control through deep reinforcement learning. *nature*, 518(7540):529-533.

[Schmidt-Schauß and Smolka, 1991] Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept descriptions with complements.

Artificial intelligence, 48(1):1–26.