
Scaling Machine Learning on
Knowledge Graphs

Keynote at EGC 2023

Axel Ngonga

January 18, 2023

Introduction
Disclaimer

▶ Very incomplete
▶ Assumes familiarity with description logics

Ngonga: Scaling Machine Learning on Knowledge Graphs 1 / 66

Section 1

Motivation

Ngonga: Scaling Machine Learning on Knowledge Graphs 2 / 66

Motivation
Example

1

▶ E+ = {Louvre,TourEiffel}
▶ E− = {Lily, James}

▶ H = {∃ isLocatedIn.Place,∃ isLocatedIn.{Paris}}

Pros and Cons

▶ Pro: explainable, exploits background knowledge
▶ Contra: slow :-(

1Source: https://bit.ly/3sxCj6eNgonga: Scaling Machine Learning on Knowledge Graphs 3 / 66

https://bit.ly/3sxCj6e

Motivation
Example

1

▶ E+ = {Louvre,TourEiffel}
▶ E− = {Lily, James}
▶ H = {∃ isLocatedIn.Place,∃ isLocatedIn.{Paris}}

Pros and Cons

▶ Pro: explainable, exploits background knowledge
▶ Contra: slow :-(

1Source: https://bit.ly/3sxCj6eNgonga: Scaling Machine Learning on Knowledge Graphs 3 / 66

https://bit.ly/3sxCj6e

Motivation
Example

1

▶ E+ = {Louvre,TourEiffel}
▶ E− = {Lily, James}
▶ H = {∃ isLocatedIn.Place,∃ isLocatedIn.{Paris}}

Pros and Cons

▶ Pro: explainable, exploits background knowledge
▶ Contra: slow :-(

1Source: https://bit.ly/3sxCj6eNgonga: Scaling Machine Learning on Knowledge Graphs 3 / 66

https://bit.ly/3sxCj6e

Motivation
Let’s play!

▶ What is 3+3?
▶ Square root of 4?
▶ What’s the capital of France?
▶ Close your eyes.

a

ahttps://www.
flickr.com/photos/
willwm/2065975725

Ngonga: Scaling Machine Learning on Knowledge Graphs 4 / 66

https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725

Motivation
Let’s play!

▶ What is 3+3?

▶ Square root of 4?
▶ What’s the capital of France?
▶ Close your eyes.

a

ahttps://www.
flickr.com/photos/
willwm/2065975725

Ngonga: Scaling Machine Learning on Knowledge Graphs 4 / 66

https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725

Motivation
Let’s play!

▶ What is 3+3?
▶ Square root of 4?

▶ What’s the capital of France?
▶ Close your eyes.

a

ahttps://www.
flickr.com/photos/
willwm/2065975725

Ngonga: Scaling Machine Learning on Knowledge Graphs 4 / 66

https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725

Motivation
Let’s play!

▶ What is 3+3?
▶ Square root of 4?
▶ What’s the capital of France?

▶ Close your eyes.

a

ahttps://www.
flickr.com/photos/
willwm/2065975725

Ngonga: Scaling Machine Learning on Knowledge Graphs 4 / 66

https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725

Motivation
Let’s play!

▶ What is 3+3?
▶ Square root of 4?
▶ What’s the capital of France?
▶ Close your eyes. a

ahttps://www.
flickr.com/photos/
willwm/2065975725

Ngonga: Scaling Machine Learning on Knowledge Graphs 4 / 66

https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725
https://www.flickr.com/photos/willwm/2065975725

Motivation
How does the brain form thoughts?

In a nutshell

▶ Multiple representations seem to be beneficial for rapid cognition
▶ Can they help improve the runtime of class expression learning?

▶ System 1 [Kahneman, 2011]
▶ Intuitive responses
▶ Time-efficient
▶ Unconscious

▶ System 2
▶ Logical responses
▶ Resource-intensive
▶ Conscious

▶ Both trainable and configurable

Ngonga: Scaling Machine Learning on Knowledge Graphs 5 / 66

Motivation
How does the brain form thoughts?

In a nutshell

▶ Multiple representations seem to be beneficial for rapid cognition
▶ Can they help improve the runtime of class expression learning?

▶ System 1 [Kahneman, 2011]
▶ Intuitive responses
▶ Time-efficient
▶ Unconscious

▶ System 2
▶ Logical responses
▶ Resource-intensive
▶ Conscious

▶ Both trainable and configurable

Ngonga: Scaling Machine Learning on Knowledge Graphs 5 / 66

Motivation
How does the brain form thoughts?

In a nutshell

▶ Multiple representations seem to be beneficial for rapid cognition
▶ Can they help improve the runtime of class expression learning?

▶ System 1 [Kahneman, 2011]
▶ Intuitive responses
▶ Time-efficient
▶ Unconscious

▶ System 2
▶ Logical responses
▶ Resource-intensive
▶ Conscious

▶ Both trainable and configurable

Ngonga: Scaling Machine Learning on Knowledge Graphs 5 / 66

Motivation
How does the brain form thoughts?

In a nutshell

▶ Multiple representations seem to be beneficial for rapid cognition
▶ Can they help improve the runtime of class expression learning?

▶ System 1 [Kahneman, 2011]
▶ Intuitive responses
▶ Time-efficient
▶ Unconscious

▶ System 2
▶ Logical responses
▶ Resource-intensive
▶ Conscious

▶ Both trainable and configurable

Ngonga: Scaling Machine Learning on Knowledge Graphs 5 / 66

Section 2

Class Expression Learning

Ngonga: Scaling Machine Learning on Knowledge Graphs 6 / 66

Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from
[Lehmann and Hitzler, 2010])

▶ Given:
▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [Heindorf et al., 2022]

Ngonga: Scaling Machine Learning on Knowledge Graphs 7 / 66

Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from
[Lehmann and Hitzler, 2010])

▶ Given:
▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [Heindorf et al., 2022]

Ngonga: Scaling Machine Learning on Knowledge Graphs 7 / 66

Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from
[Lehmann and Hitzler, 2010])

▶ Given:
▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)

▶ Practically, aim to find H ∈ argmax
C∈L

Q(C) [Heindorf et al., 2022]

Ngonga: Scaling Machine Learning on Knowledge Graphs 7 / 66

Class Expression Learning
Common Approach

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

Ngonga: Scaling Machine Learning on Knowledge Graphs 8 / 66

Class Expression Learning
Example: L =ALC

▶ Let C and D beALC concepts
▶ Let r ∈ NR be a role
▶ Then, the following areALC concepts

[Schmidt-Schauß and Smolka, 1991]

Syntax Semantics

⊤ ∆I

⊥ ∅
C ∈ NC CI ⊆ ∆I

¬C ∆I\CI

C ⊓ D CI ∩ DI

C ⊔ D CI ∪ DI

∃r.C {x ∈ ∆I : ∃y ∈ CI with (x, y) ∈ rI}
∀r.C {x ∈ ∆I : (x, y) ∈ rI → y ∈ CI}

Ngonga: Scaling Machine Learning on Knowledge Graphs 9 / 66

Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x [Lehmann and Hitzler, 2010]

Example

▶ Let S be the set of all concepts in our language L = EL
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =



C
NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC

Ngonga: Scaling Machine Learning on Knowledge Graphs 10 / 66

Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x [Lehmann and Hitzler, 2010]

Example

▶ Let S be the set of all concepts in our language L = EL
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =



C
NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC

Ngonga: Scaling Machine Learning on Knowledge Graphs 10 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive

⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 11 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 11 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 11 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming

▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 11 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large

⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 11 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

▶ Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 11 / 66

Section 3

Representing Concepts as SPARQL

Ngonga: Scaling Machine Learning on Knowledge Graphs 12 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]

Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.

¬C {?var ?p ?o} UNION {?s ?p ?var}.
FILTER NOT EXISTS {τ (C, ?var)}

C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}

C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}

C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}

∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}

∀ r.C { ?var r ?s0.
{ SELECT ?var (count(?s1) AS ?cnt1)

WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }

Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER (?cnt1 = ?cnt2) }
Ngonga: Scaling Machine Learning on Knowledge Graphs 13 / 66

Representing Concepts as SPARQL
Storage Solutions

▶ Important difference are indexing data structures
▶ Typical indexes include

▶ Resource index, e.g., a hash table
▶ Triple index, e.g., a B+ tree

Ngonga: Scaling Machine Learning on Knowledge Graphs 14 / 66

Representing Concepts as SPARQL
TENTRIS: Idea

Idea [Bigerl et al., 2020]
▶ Exploit tensor representation to accelerate querying
▶ Devise data structure to accommodate rapid querying

Ngonga: Scaling Machine Learning on Knowledge Graphs 15 / 66

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Scaling Machine Learning on Knowledge Graphs 16 / 66

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Scaling Machine Learning on Knowledge Graphs 16 / 66

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Scaling Machine Learning on Knowledge Graphs 16 / 66

Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7

Ngonga: Scaling Machine Learning on Knowledge Graphs 16 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V

▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Scaling Machine Learning on Knowledge Graphs 17 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V
▶ K1 = · · · = Kn ⊂ N

▶ B or N as co-domain
▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Scaling Machine Learning on Knowledge Graphs 17 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V
▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Scaling Machine Learning on Knowledge Graphs 17 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V
▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v

Ngonga: Scaling Machine Learning on Knowledge Graphs 17 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B
▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0

Ngonga: Scaling Machine Learning on Knowledge Graphs 18 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B

▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0

Ngonga: Scaling Machine Learning on Knowledge Graphs 18 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B
▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0

Ngonga: Scaling Machine Learning on Knowledge Graphs 18 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor

▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]
▶ Slices can be joined via Einstein summation [Barr, 1989]

Ngonga: Scaling Machine Learning on Knowledge Graphs 19 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor
▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]

▶ Slices can be joined via Einstein summation [Barr, 1989]

Ngonga: Scaling Machine Learning on Knowledge Graphs 19 / 66

Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor
▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]
▶ Slices can be joined via Einstein summation [Barr, 1989]

Ngonga: Scaling Machine Learning on Knowledge Graphs 19 / 66

Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u

Ngonga: Scaling Machine Learning on Knowledge Graphs 20 / 66

Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u

Ngonga: Scaling Machine Learning on Knowledge Graphs 20 / 66

Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u

Ngonga: Scaling Machine Learning on Knowledge Graphs 20 / 66

Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

Ngonga: Scaling Machine Learning on Knowledge Graphs 21 / 66

Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

Ngonga: Scaling Machine Learning on Knowledge Graphs 21 / 66

Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

Ngonga: Scaling Machine Learning on Knowledge Graphs 21 / 66

Representing Concepts as SPARQL
TENTRIS: Hypertrie

▶ Query for any tensor slice efficiently
▶ Allow for efficient querying

1 3 4 5

2 62

3 4 74 5

2

5

6

7

T

T[3, : , :]

3

Ngonga: Scaling Machine Learning on Knowledge Graphs 22 / 66

Representing Concepts as SPARQL
TENTRIS: Hypertrie

(: , : , : 〉
1 2 3

41 3 5 2 6 53 4 7

〈3, : , : 〉

2 46 5

〈3, 6, : 〉〈3, 2, : 〉 〈3, : , 4〉 〈3, : , 5〉 〈3, : , 7〉

1 2
7

7 2 2 6

 〈 : , 2, : 〉

3 4
2

 〈 : , 2, 4〉 〈 : , 2, 5〉

3

5

1

〈 : , 2, 3〉

1

 〈 : , 6, : 〉

1
3 5

 〈 : , : , 4〉

1 23
1 2

 〈 : , : , 3〉

1 2
1 2

54

1
1 3 4

43

7
2…… …

… … … …

…
…

……

… ……… …

…

…

▶ Query for any tensor slice efficiently
▶ Storage bound is reduced fromO(d! · d · z(h)) for all collation

orders toO(2d−1 · d · z(h))

Ngonga: Scaling Machine Learning on Knowledge Graphs 23 / 66

Representing Concepts as SPARQL
TENTRIS: Hypertrie

0

50K

100K

N
od

e
co

un
t

Height: 2
Dataset: SWDF

0

50M

100M

150M

200M

Height: 2
Dataset: DBpedia

0

50M

100M

150M

Height: 2
Dataset: WatDiv

0
250M
500M
750M

1B
1.25B

Height: 2
Dataset: Wikidata

b s h hs hs
i

0

200K

400K

600K

Height: 1
Dataset: SWDF

b s h hs hs
i

0

250M

500M

750M

1B

Height: 1
Dataset: DBpedia

b s h hs hs
i

0

500M

1B

Height: 1
Dataset: WatDiv

b s h hs hs
i

0

2B

4B

6B

Height: 1
Dataset: Wikidata

▶ Hypertrie topology seems sparse
▶ Compression to improve space, loading and query times

[Bigerl et al., 2022]

Ngonga: Scaling Machine Learning on Knowledge Graphs 24 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology

▶ 3 compression approaches
1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Scaling Machine Learning on Knowledge Graphs 25 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology
▶ 3 compression approaches

1. Remove duplicates via hashing (global)

2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Scaling Machine Learning on Knowledge Graphs 25 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology
▶ 3 compression approaches

1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly

3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Scaling Machine Learning on Knowledge Graphs 25 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

⟨: , : , : ⟩
dim 1

1 2 3 4 5 6
dim 2

8 9
dim 3

2 3 4 5 6 7
r: 1
z: 10

Inner single-entry node Single-entry leaf nodes

Duplicate nodes
Inner single-
entry node Single-entry leaf

nodes Duplicate nodes

Baseline hypertrie Optimized hypertrie

⟨: , : , 4⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨: , : , 2⟩
dim 1

1 3
dim 2

8
r: 1
z: 2

⟨4, 8, : ⟩
dim 1

3
r: 2
z: 1

⟨4, : , 3⟩
dim 1

8
r: 2
z: 1

⟨5, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨6, 9, : ⟩
dim 1

7
r: 2
z: 1

⟨: , 9, : ⟩
dim 1

5 6
dim 2

7
r: 1
z: 2

⟨4, : , : ⟩
dim 1

8
dim 2

3
r: 1
z: 1

A

dim 1

1

B

2

C

3

D

4

E

5

F

6

F

dim 2

8

G

9

H

dim 3

2

I

3

J

4

I

5

K

6

L

7

M

r: 1
z: 10

E

8

3

r: 1
z: 1

H

dim 1

5

7

6

7

dim 2

7

R

r: 1
z: 2

I

dim 1

1

8

3

8

dim 2

8

Q

r: 2
z: 2

▶ Compress data based on local and global node topology
▶ 3 compression approaches

1. Remove duplicates via hashing (global)
2. Single-entry inner nodes (local) store sub-hypertries directly
3. Single-entry leaf nodes are eliminated via in-place storage (local)

Ngonga: Scaling Machine Learning on Knowledge Graphs 25 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

▶ Comparison with state-of-the-art approaches
▶ Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
▶ Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)

V

S

G

Fl

F

B

T-hsi

T-hs

T-h

T-b

T
ri

p
le

st
or

e

420

304

287

185

771

304

323

348

496

779

SWDF

61

222

78

169

137

107

167

173

246

534

DBpedia

31

91

47

154

119

91

108

110

131

363

WatDiv

bytes/triple (J less is better)

40

59

158

140

28

117

123

159

n/a

n/a

Wikidata

Ngonga: Scaling Machine Learning on Knowledge Graphs 26 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

▶ Comparison with state-of-the-art approaches
▶ Hardware: AMD EPYC 7742, 1 TB RAM and 2×3 TB NVMe SSDs
▶ Datasets: Between 372K (SWDF) and 5.5B triples (WikiData)

V

S

G

Fl

F

B

T-hsi

T-hs

T-h

T-b

T
ri

p
le

st
or

e

420

304

287

185

771

304

323

348

496

779

SWDF

61

222

78

169

137

107

167

173

246

534

DBpedia

31

91

47

154

119

91

108

110

131

363

WatDiv

bytes/triple (J less is better)

40

59

158

140

28

117

123

159

n/a

n/a

Wikidata

Ngonga: Scaling Machine Learning on Knowledge Graphs 26 / 66

Representing Concepts as SPARQL
TENTRIS: Compressed Hypertrie

10−2

10−1

1

101

102

103

104

Q
p

S

SWDF

timeout

DBpedia WatDiv Wikidata

n/a n/a

1

101

102

103

Q
M

p
H

12
34

13
72

14
12

14
79

64
8

20
3

21
0 38

8 86
0

10
4

84
.4

97
.1

11
0 14

4

45
.5

3.
45

16
.4

4.
41

67
.8

13
.7

45
.3

28
4

29
6

33
5

16
0

37
.0

10
7

73
.2

6.
46

74
.8

2.
99

3.
13 3.

45

1.
70

1.
12 1.

32 1.
56 1.

83

n/a n/a

T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V

0

10

20

%
fa

ile
d

Q

T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V
1 1

T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V T
-b

T
-h

T
-h

s
T

-h
si

B F F
l

G S V

Triple store

1

24

2 1 0n/a n/a

▶ Better runtimes on all datasets
▶ Can operate on very large datasets (no time-outs)

Ngonga: Scaling Machine Learning on Knowledge Graphs 27 / 66

Representing Concepts as SPARQL
TENTRIS: Carcinogenesis

▶ Comparison on supervised machine learning tasks inALC
▶ Better runtimes on all datasets considered

Ngonga: Scaling Machine Learning on Knowledge Graphs 28 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 29 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
▶ Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 29 / 66

Section 4

Improving Quality Functions

Ngonga: Scaling Machine Learning on Knowledge Graphs 30 / 66

Improving Quality Functions
Refinement Operators

▶ Implement informed search in space S of all concepts with partial
ordering⊑

▶ Refinement operator ρ : S → 2S with
▶ ∀x ∈ ρ(s) : x ⊑ s (downward)
▶ ∀x ∈ ρ(s) : s ⊑ x (upward)

Ngonga: Scaling Machine Learning on Knowledge Graphs 31 / 66

Improving Quality Functions
Refinement Operators

▶ Implement informed search in space S of all concepts with partial
ordering⊑

▶ Refinement operator ρ : S → 2S with
▶ ∀x ∈ ρ(s) : x ⊑ s (downward)
▶ ∀x ∈ ρ(s) : s ⊑ x (upward)

Ngonga: Scaling Machine Learning on Knowledge Graphs 31 / 66

Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree

▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.

Ngonga: Scaling Machine Learning on Knowledge Graphs 32 / 66

Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree
▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.

Ngonga: Scaling Machine Learning on Knowledge Graphs 32 / 66

Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree
▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.

Ngonga: Scaling Machine Learning on Knowledge Graphs 32 / 66

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards

[Demir and Ngonga Ngomo, 2021]

Ngonga: Scaling Machine Learning on Knowledge Graphs 33 / 66

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards

[Demir and Ngonga Ngomo, 2021]

Ngonga: Scaling Machine Learning on Knowledge Graphs 33 / 66

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts

▶ Optimize for cumulative discounted future rewards
[Demir and Ngonga Ngomo, 2021]

Ngonga: Scaling Machine Learning on Knowledge Graphs 33 / 66

Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards

[Demir and Ngonga Ngomo, 2021]

Ngonga: Scaling Machine Learning on Knowledge Graphs 33 / 66

Improving Quality Functions
Reinforcement Learning5/31/22, 1:17 PM https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg

https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg 1/1

▶ St = Concept C

▶ Rt =

{
1 if acc(C) = 1
0 else

▶ At = Transition from concept C to some concept D

Ngonga: Scaling Machine Learning on Knowledge Graphs 34 / 66

Improving Quality Functions
Reinforcement Learning5/31/22, 1:17 PM https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg

https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg 1/1

▶ St = Concept C

▶ Rt =

{
1 if acc(C) = 1
0 else

▶ At = Transition from concept C to some concept D

Ngonga: Scaling Machine Learning on Knowledge Graphs 34 / 66

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [Mnih et al., 2015]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Scaling Machine Learning on Knowledge Graphs 35 / 66

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [Mnih et al., 2015]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Scaling Machine Learning on Knowledge Graphs 35 / 66

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite

▶ Apply deep Q learning with target network [Mnih et al., 2015]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Scaling Machine Learning on Knowledge Graphs 35 / 66

Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [Mnih et al., 2015]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i)−Q(s, a; Θi)
)2]

Ngonga: Scaling Machine Learning on Knowledge Graphs 35 / 66

Improving Quality Functions
Reinforcement Learning – DRILL

▶ Convolutional deep Q-Network with Θ = [ω,W,H]

φ([s, s′, e+, e−]; Θ) = ReLU
(
vec(ReLU

[
Ψ([s, s′, e+, e−])∗ω

]
)·W
)
·H

Source: [Mao et al., 2016]

Ngonga: Scaling Machine Learning on Knowledge Graphs 36 / 66

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Scaling Machine Learning on Knowledge Graphs 37 / 66

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Scaling Machine Learning on Knowledge Graphs 37 / 66

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution

▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Scaling Machine Learning on Knowledge Graphs 37 / 66

Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem: Loss function converges to trivial solution
▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}

Ngonga: Scaling Machine Learning on Knowledge Graphs 37 / 66

Improving Quality Functions
Quaternions: H

23/11/2022, 21:31 Cayley Q8 quaternion multiplication graph

https://upload.wikimedia.org/wikipedia/commons/0/04/Cayley_Q8_quaternion_multiplication_graph.svg 1/1

×i

−j

j
−k

k

−i i

×j

−k

k

−i i

×k

−j

j

−1

1−i i×i

−1

1

−j

j

×j

−1

1

−k

k

×k

2

2https://en.wikipedia.org/wiki/Quaternion#/media/File:
Cayley_Q8_quaternion_multiplication_graph.svg

Ngonga: Scaling Machine Learning on Knowledge Graphs 38 / 66

https://en.wikipedia.org/wiki/Quaternion#/media/File:Cayley_Q8_quaternion_multiplication_graph.svg
https://en.wikipedia.org/wiki/Quaternion#/media/File:Cayley_Q8_quaternion_multiplication_graph.svg

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [Demir et al., 2021]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where

▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Scaling Machine Learning on Knowledge Graphs 39 / 66

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [Demir et al., 2021]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where
▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Scaling Machine Learning on Knowledge Graphs 39 / 66

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [Demir et al., 2021]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where
▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Scaling Machine Learning on Knowledge Graphs 39 / 66

Improving Quality Functions
Quaternions: H

▶ Can define embeddings in this space: QMult [Demir et al., 2021]
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗) · o⃗, where
▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions

Ngonga: Scaling Machine Learning on Knowledge Graphs 39 / 66

Improving Quality Functions
Unsupervised Learning – Training Data

▶ Follow refinement path at random
▶ Select concept C
▶ Set E+ ⊆ R(C) and E− ∩ R(C) = ∅
E+ = {Individuals with a sister }
E− = {Individuals with no sister}

⊤

Person . . . Place . . . Organisation

Person ⊓ ∃hasSibling.⊤

Person ⊓ ∀hasSibling.Person . . . Person ⊓ ∃hasSibling.Female

Ngonga: Scaling Machine Learning on Knowledge Graphs 40 / 66

Improving Quality Functions
Evaluation

▶ Used Family und BioPax datasets
▶ Evaluation on 114 learning problems

Approaches F1 Acc Runtime # Exp.

CELOE .995± 0.03 .993± 0.04 7.5± 1.1 33.5± 129.3
OCEL * 1.00± 0.00 11.0± 1.4 2271.6± 1269.2
ELTL .990± 0.06 .984± 0.09 8.1± 1.6 *
DRILL 1.00± 0.00 1.00± 0.00 1.1± 0.5 9.88± 38.5

Ngonga: Scaling Machine Learning on Knowledge Graphs 41 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive

⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 42 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic

⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 42 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 42 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
▶ Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 42 / 66

Section 5

Learning with Priming

Ngonga: Scaling Machine Learning on Knowledge Graphs 43 / 66

Learning with Priming
EVOLEARNER – Idea

▶ Represent concepts as trees, e.g.,
(Female ⊔ Parent) ⊓ ∃married.Male

▶ Learn in evolutionary fashion using genetic programming
▶ Exploit priming effect (remember the green apple)
▶ Intuition: An individual is an overlap several concepts

[Heindorf et al., 2022]

Parent Male

married

Female

Ngonga: Scaling Machine Learning on Knowledge Graphs 44 / 66

Learning with Priming
EVOLEARNER – Idea

▶ Represent concepts as trees, e.g.,
(Female ⊔ Parent) ⊓ ∃married.Male

▶ Learn in evolutionary fashion using genetic programming
▶ Exploit priming effect (remember the green apple)
▶ Intuition: An individual is an overlap several concepts

[Heindorf et al., 2022]

Parent Male

married

Female

Ngonga: Scaling Machine Learning on Knowledge Graphs 44 / 66

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1

Person 1

Male

Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Scaling Machine Learning on Knowledge Graphs 45 / 66

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types:

Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Scaling Machine Learning on Knowledge Graphs 45 / 66

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Scaling Machine Learning on Knowledge Graphs 45 / 66

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Grandfather Father

Person 2

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Scaling Machine Learning on Knowledge Graphs 45 / 66

Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1Male

Grandfather Father

Person 2

married

Mother
Female

Person 3
hasSibling

Female
Parent

. . .

. . .

Person 4
hasParent

Person 5

hasChild

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ (∃hasChild.Child))

Ngonga: Scaling Machine Learning on Knowledge Graphs 45 / 66

Learning with Priming
EVOLEARNER – Data Properties

▶ Given a data property d from the knowledge base K and a set E of
positive and negative examples

▶ We precompute up to k splits of the form d ≤ v̄i per data property
▶ Splits are computed to maximize information gain:

IG(E, v̄i) = H(E)− H(E|v̄i) = H(E)−
(
|EL|
|E|

H(EL) +
|ER|
|E|

H(ER)

)
E

EL ER

p ≤ v̄i p > v̄i

Ngonga: Scaling Machine Learning on Knowledge Graphs 46 / 66

Learning with Priming
EVOLEARNER – Training

Initialization
create randomly

Selection
select best

Crossover
combine pairs

Mutation
change slightly

0.23
0.15

Ngonga: Scaling Machine Learning on Knowledge Graphs 47 / 66

Learning with Priming
EVOLEARNER – Evaluation

EvoLearner DL-Learner DL-Learner Aleph SPaCEL
Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 0.70± 0.12 0.71 ± 0.01 no results 0.46± 0.12 0.60± 0.08
Family 1.00 ± 0.01 0.98± 0.05 1.00 ± 0.00 — 0.97± 0.11
Hepatitis 0.79 ± 0.08 0.61± 0.03 no results 0.38± 0.12 no results
Lymphography 0.84 ± 0.09 0.78± 0.10 0.85 ± 0.10 0.84± 0.09 0.75± 0.13
Mammographic 0.81 ± 0.06 0.64± 0.01 0.78± 0.08 0.48± 0.08 0.64± 0.06
Mutagenesis 1.00 ± 0.00 0.93± 0.14 timeout 0.43± 0.47 1.00 ±0.00
NCTRER 1.00 ± 0.00 0.74± 0.01 0.94± 0.06 0.71± 0.18 1.00 ± 0.00
Premier League 1.00 ± 0.00 0.99± 0.04 0.81± 0.13 0.94± 0.11 0.98± 0.04
Pyrimidine 0.91 ± 0.14 0.84± 0.15 0.84± 0.22 0.90± 0.32 0.86± 0.29

Ngonga: Scaling Machine Learning on Knowledge Graphs 48 / 66

Learning with Priming
EVOLEARNER – Ablation Study

EvoLearner Without Without Without
Learning Problem (ours) Rand. Walk Init. Data Properties Both

Carcinogenesis 0.70 ± 0.12 0.60 ± 0.21 0.63 ± 0.13 0.62 ± 0.13
Family 1.00 ± 0.01 0.87 ± 0.13 — 0.86 ± 0.14
Hepatitis 0.79 ± 0.08 0.67 ± 0.15 0.46 ± 0.14 0.47 ± 0.13
Lymphography 0.84 ± 0.09 0.83 ± 0.11 — 0.83 ± 0.09
Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.77 ± 0.07 0.75 ± 0.06
Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 0.44 ± 0.48 0.50 ± 0.51
NCTRER 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.05 0.75 ± 0.05
Premier League 1.00 ± 0.00 0.98 ± 0.04 0.50 ± 0.23 0.50 ± 0.22
Pyrimidine 0.91 ± 0.14 0.83 ± 0.22 0.67 ± 0.00 0.67 ± 0.00

Ngonga: Scaling Machine Learning on Knowledge Graphs 49 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic

⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 50 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive

⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 50 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming

▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 50 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large

⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 50 / 66

Learning problem
Challenges

Knowledge
base

Training data Quality
function

Candidate
generation

Retrieval
function

Candidate
solution

! Retrieval is expensive⇒ Exploit SPARQL
! Quality functions are often myopic⇒ Exploit embeddings
! Candidate generation is expensive⇒ Exploit priming
▶ Search space is large⇒ Prune by length

Ngonga: Scaling Machine Learning on Knowledge Graphs 50 / 66

Section 6

CLIP

Ngonga: Scaling Machine Learning on Knowledge Graphs 51 / 66

CLIP
Approach

▶ Idea: Prune horizontally by
▶ predicting target concept length and
▶ discarding longer refinements

Ngonga: Scaling Machine Learning on Knowledge Graphs 52 / 66

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.

Ngonga: Scaling Machine Learning on Knowledge Graphs 53 / 66

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C

▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.

Ngonga: Scaling Machine Learning on Knowledge Graphs 53 / 66

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C

▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),
for all concepts C and D.

Ngonga: Scaling Machine Learning on Knowledge Graphs 53 / 66

CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (if A is an atomic
concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.

Ngonga: Scaling Machine Learning on Knowledge Graphs 53 / 66

CLIP
Concept Length Prediction

Embedding DNNJohn

Peter, Anna,
Jack

7

▶ Input: positive and negative examples
▶ Output: length of the target concept

Ngonga: Scaling Machine Learning on Knowledge Graphs 54 / 66

CLIP
Concept Learning

E
m
bedding

DNN
John

Peter, Anna,
Jack

Male hasParent.(hasChild.Female)

C
LIP

Ngonga: Scaling Machine Learning on Knowledge Graphs 55 / 66

CLIP
Training

0 20 40
Epochs

20

40

60

80

100

A
cc

ur
ac

y

Carcinogenesis

GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis

GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible

GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi

GRU
LSTM
CNN
MLP

0 20 40
Epochs

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Carcinogenesis
GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis
GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible
GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi
GRU
LSTM
CNN
MLP

Ngonga: Scaling Machine Learning on Knowledge Graphs 56 / 66

CLIP
Validation

0 20 40
Epochs

20

40

60

80

A
cc

ur
ac

y

Carcinogenesis

GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis

GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible
GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi

GRU
LSTM
CNN
MLP

0 20 40
Epochs

1.50

1.75

2.00

2.25

2.50

Lo
ss

Carcinogenesis
GRU
LSTM
CNN
MLP

0 50 100
Epochs

Mutagenesis
GRU
LSTM
CNN
MLP

0 100 200
Epochs

Semantic Bible

GRU
LSTM
CNN
MLP

0 20 40
Epochs

Vicodi
GRU
LSTM
CNN
MLP

Ngonga: Scaling Machine Learning on Knowledge Graphs 57 / 66

CLIP
Network Architecture

Carcinogenesis Mutagenesis

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.89 0.96 0.97 0.80 0.48 0.83 0.97 0.98 0.68 0.33
Val. Acc. 0.76 0.93 0.82 0.77 0.48 0.70 0.82 0.71 0.65 0.35
Test Acc. 0.92 0.95 0.84 0.80 0.49 0.78 0.85 0.70 0.68 0.33
Test F1 0.88 0.92 0.71 0.59 0.33 0.76 0.85 0.70 0.67 0.32

Semantic Bible Vicodi

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.85 0.93 0.99 0.68 0.33 0.73 0.81 0.83 0.66 0.28
Val. Acc. 0.49 0.58 0.44 0.46 0.26 0.55 0.77 0.70 0.64 0.30
Test Acc. 0.52 0.53 0.37 0.40 0.25 0.66 0.80 0.69 0.66 0.29
Test F1 0.27 0.38 0.20 0.22 0.16 0.45 0.50 0.45 0.38 0.20

Ngonga: Scaling Machine Learning on Knowledge Graphs 58 / 66

CLIP
Comparison with SOTA

Carcinogenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.78± 0.27 0.89± 0.31 0.58± 0.46 0.99 ± 0.00
F1 ↑ 0.62± 0.46 − 0.51± 0.47 0.96∗ ± 0.10
Runtime (min) ↓ 0.93± 0.94 3.01± 0.72 0.75± 0.07 0.10∗ ± 0.09
Length ↓ 1.69± 0.89 7.81± 6.88 1.04± 0.39 2.00 ± 1.28

Mutagenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.00 0.71± 0.45 0.37± 0.43 0.99 ± 0.00
F1 ↑ 0.81± 0.35 − 0.29± 0.40 0.93∗ ± 0.18
Runtime (min) ↓ 0.70± 0.77 2.39± 0.18 0.29± 0.16 0.07∗ ± 0.05
Length ↓ 2.79± 1.17 12.63± 7.03 1.10± 0.81 2.20 ± 1.16

Semantic Bible

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.02 0.66± 0.47 0.59± 0.37 0.99 ± 0.00
F1 ↑ 0.97± 0.10 − 0.57± 0.38 0.98 ± 0.05
Runtime (min) ↓ 0.47± 0.80 22.15± 96.55 0.09± 0.07 0.06∗ ± 0.05
Length ↓ 3.85± 2.44 9.54± 5.73 1.38± 1.76 2.52∗ ± 1.26

Vicodi

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.29± 0.44 0.25± 0.43 0.28± 0.44 0.99∗ ± 0.00
F1 ↑ 0.25± 0.44 − 0.25± 0.44 0.97∗ ± 0.09
Runtime (min) ↓ 1.30± 0.71 4.78± 1.12 1.81± 0.46 0.16∗ ± 0.12
Length ↓ 10.79± 6.30 11.54± 6.00 11.14± 6.11 1.68∗ ± 0.98

Ngonga: Scaling Machine Learning on Knowledge Graphs 59 / 66

Section 7

Summary

Ngonga: Scaling Machine Learning on Knowledge Graphs 60 / 66

Summary
Open Questions

Holy Grail

▶ Can the selection of representations be automated?
▶ LEMUR and ENEXA

▶ Tensors: Variable ordering?
Compressed data structure?

▶ RL: Reduce training costs?
Hyperparameters?
Embeddings?

▶ Evolutionary learning: Myopia?
Runtime? Continuous data?

Ngonga: Scaling Machine Learning on Knowledge Graphs 61 / 66

Summary
Open Questions

Holy Grail

▶ Can the selection of representations be automated?
▶ LEMUR and ENEXA

▶ Tensors: Variable ordering?
Compressed data structure?

▶ RL: Reduce training costs?
Hyperparameters?
Embeddings?

▶ Evolutionary learning: Myopia?
Runtime? Continuous data?

Ngonga: Scaling Machine Learning on Knowledge Graphs 61 / 66

Summary
Thank You!

Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N’Dah
Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif,
Muhammed Saleem, and many more

Thank You!
Questions?

▶ https://dice-research.org
▶ https://twitter.com/DiceResearch
▶ https://twitter.com/NgongaAxel

Ngonga: Scaling Machine Learning on Knowledge Graphs 62 / 66

https://dice-research.org
https://twitter.com/DiceResearch
https://twitter.com/NgongaAxel

References I

[Barr, 1989] Barr, A. H. (1989).
The einstein summation notation: Introduction and extensions.
SIGGRAPH 89 Course notes# 30 on Topics in Physically-Based Modeling,
pages J1–J12.

[Bigerl et al., 2020] Bigerl, A., Conrads, F., Behning, C., Sherif, M. A.,
Saleem, M., and Ngonga Ngomo, A.-C. (2020).
Tentris–a tensor-based triple store.
In International Semantic Web Conference, pages 56–73. Springer.

[Bigerl et al., 2022] Bigerl, A., Conrads, L., Behning, C., Saleem, M., and
Ngonga Ngomo, A.-C. (2022).
Hashing the hypertrie: Space-and time-efficient indexing for sparql in
tensors.
In International Semantic Web Conference, pages 57–73. Springer.

Ngonga: Scaling Machine Learning on Knowledge Graphs 63 / 66

References II

[Bin et al., 2016] Bin, S., Bühmann, L., Lehmann, J., and Ngonga Ngomo,
A.-C. (2016).
Towards sparql-based induction for large-scale rdf data sets.
In ECAI 2016, pages 1551–1552. IOS Press.

[Demir et al., 2021] Demir, C., Moussallem, D., Heindorf, S., and Ngomo,
A.-C. N. (2021).
Convolutional hypercomplex embeddings for link prediction.
In Asian Conference on Machine Learning, pages 656–671. PMLR.

[Demir and Ngonga Ngomo, 2021] Demir, C. and Ngonga Ngomo, A.-C.
(2021).
Drill–deep reinforcement learning for refinement operators in alc.
arXiv preprint arXiv:2106.15373.

Ngonga: Scaling Machine Learning on Knowledge Graphs 64 / 66

References III

[Heindorf et al., 2022] Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T.,
Golani, V. N., Demir, C., and Ngonga Ngomo, A.-C. (2022).
Evolearner: Learning description logics with evolutionary algorithms.
In Proceedings of the ACM Web Conference 2022, pages 818–828.

[Kahneman, 2011] Kahneman, D. (2011).
Thinking, fast and slow.
Macmillan.

[Lehmann and Hitzler, 2010] Lehmann, J. and Hitzler, P. (2010).
Concept learning in description logics using refinement operators.
Machine Learning, 78(1):203–250.

Ngonga: Scaling Machine Learning on Knowledge Graphs 65 / 66

References IV

[Mao et al., 2016] Mao, H., Alizadeh, M., Menache, I., and Kandula, S.
(2016).
Resource management with deep reinforcement learning.
In Proceedings of the 15th ACM workshop on hot topics in networks,
pages 50–56.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. (2015).
Human-level control through deep reinforcement learning.
nature, 518(7540):529–533.

[Schmidt-Schauß and Smolka, 1991] Schmidt-Schauß, M. and Smolka, G.
(1991).
Attributive concept descriptions with complements.
Artificial intelligence, 48(1):1–26.

Ngonga: Scaling Machine Learning on Knowledge Graphs 66 / 66

	Motivation
	Class Expression Learning
	Representing Concepts as SPARQL
	Improving Quality Functions
	Learning with Priming
	CLIP
	Summary

