

Developmental machine learning Machines that learn like children ... and help children learn better

Pierre-Yves Oudeyer Project-Team INRIA-ENSTA-ParisTech FLOWERS

http://www.pyoudeyer.com

https://flowers.inria.fr

Twitter: @pyoudeyer

European Research Council

Autonomous Learning and Development in Human Infants

Families of developmental « forces »

Body morphology and growth :

- Morphology, body growth and maturation
- Motor and perceptual primitives

Cognitive biases:

- Affordances
- Perceptual/linguistic categories grounded in action
- Hierarchies of actions, states, objectives

(Ly and Oudeyer, 2010)

Spontaneous active exploration

(Francis Vachon)

Intrinsic motivation, curiosity and active learning

→ Intrinsic drive to reduce uncertainty, and to experiencing novelty, surprise, cognitive dissonance, challenge, incongruences, ...

➔ Optimal interest = optimal difficulty = neither trivial nor too difficult challenges Berlyne (1960), White (1960), Kagan (1972), Csikszentmihalyi (1996), (Kidd et al., 2012),

www.nature.com/reviews

and curiosity

NEUROSCIENCE

consolidation

J.Gottlieb (Columbia, NY)

L. Smith (Indiana Univ.)

C. Kidd (Stanford)

Towards a neuroscience of active sampling and curiosity

Jacqueline Gottlieb^{1,2,3}* and Pierre-Yves Oudeyer^{4,5}

Development of **a unified formal and theoretical framework** in psychology and neuroscience

(Frontiers in Neuroscience 2007; IEEE TEC 2007; Trends in Cognitive Science, Nov. 2013; Progress in Brain Research, 2016; Frontiers in Neuroscience, 2014; Scientific Reports, 2016; PNAS, 2016; Nature Reviews Neuro. 2018)

The child as a sense-making organism:

Exploring to make good predictive models of the world and control it!

Robotic Playgrounds

(Oudeyer et al., 2004; 2007)

Discovery of sensorimotor affordances Discovery of Discovery of <u>speech communication</u> <u>nested tool use</u>

Essential ingredients:

- Dynamic movement primitives (Schaal, Ijspeert et al, 2003, 2007)
- Object-based perceptual primitives (like infants, builds on prior perceptual learning)
- Self-supervised learning forward/inverse models with hindsight learning and episodic memory
- Curiosity-driven self-organization of learning curriculum through goal exploration

What is an « interesting » learning experiment?

(verbal) hypotheses from psychology and/or developmental biology:

- Cognitive homeostasis/auto-poiesis, high predictability (Varela and Maturana, explo. due to external perturbations)
- High novelty/high uncertainty? (many)
- Knowledge gap, cognitive dissonance? (Kagan, Festinger, Lowenstein)
- Intermediate novelty, intermediate complexity? (Berlyne, Kidd)
- Intermediate challenge? (White, Csikszentmihalyi)

Technical ideas from cognitive modeling or ML:

- High novelty/high uncertainty? (many)
- Surprise? (Itti and Baldi)
- Free energy? (Friston)
- Different forms of information gain/learning progress, e.g.:
 - KL-divergence between prior and posterior probabilistic model
 - Predictive information (Martius), predictive information gain (Little & Sommer)
 - Compression progress (Schmidhuber)
 - Empirical improvement of prediction or control (Oudeyer et al.)

The (absolute) Learning Progress hypothesis

Interestingness

proportional to empirical absolute learning progress

(absolute value of derivative)

→ Automated Curriculum Learning

(Oudeyer and Kaplan, 2003; 2007;
Gottlieb et al., 2013; Oudeyer et al., 2016)
→ Few assumptions on underlying learning machinery and on match between biases and real world (as opposed to measures of learning progress based on KL-divergence measures)

Evolution of empirical errors in in 4 activities

% of time spent exploring each activity (proportional to abs. val of learning progress + ϵ)

Intrinsically Motivated Goal Exploration Processes

(Oudeyer and Kaplan, IEEE TEC 2007; Baranes and Oudeyer, RAS 2013; Colas et al., ICML 2019)

Exploring omni-directional locomotion

Policies: $\pi_{ heta}$: oscillators in 8 motors, $heta \in [-1, 1]^{24}$ Behavioral descriptors: $\varphi \in \mathcal{R}^3$: translation and rotation over 3s (Baranes and Oudeyer, IROS 2010, RAS 2013)

(Baranes and Oudeyer, Robotics and Autonomous Systems, 2013)

MACOB: Modular population-based IMGEPs

Poppy open-source robots: http://www.poppy-project.org

 $\pi_{ heta}$ 32 dim. Dynamic Motion Primitive

(b) Example Joints Trajectory

(Forestier et al., 2017)

Behavioral descriptors $\varphi = [\varphi_i] \in \mathcal{R}^{310}$ Traj. Params. of object positions/sound/light

arphihand arphiJoystickR arphiJoystickL arphiWhiteToy arphiBall \cdots $arphi distractor 1 \ arphi distractor 2 \ dots \ arphi \ ar$

Curiosity-driven discovery of tool use

https://www.youtube.com/watch?v=NOLAwD4ZTWo (Forestier et al., 2017)

Project Malmo (Minecraft) with neural net controllers

> Rémy Portelas (Microsoft-Inria grant)

CURIOUS: intrinsically motivated modular multi-goal Deep RL

Distractors

(Colas et al., ICML19)

Deep RL based IMGEPs (Curious) vs. Population-based IMGEPs: + better generalization - Slower initial discoveries

How to learn (modular) representation of goals?

2 approaches:

- 1) Unsupervised learning (beta-VAEs) (Laversanne-Finot et al, CoRL 2018)
- 2) Leveraging **language** and its compositionality (Lair et al., Vigil workshop at Neurips 2019)

MUGL: Unsupervised goal learning prediction and exploration

(Péré et al., ICLR 2018; Laversanne-Finot et al., CoRL 2018)

Discovery of independantly controllable features

Using language as a cognitive tool to imagine new goals in curiosity-driven exploration

Language Grounding through Social Interactions and Curiosity-Driven Multi-Goal Learning Nicolas Lair, Cédric Colas, Rémy Portelas, Jean-Michel Dussoux, Peter Ford Dominey, Pierre-Yves Oudeyer Vigil Workshop at Neurips 19

Using language as a cognitive tool to imagine new goals in curiosity-driven exploration

Language Grounding through Social Interactions and Curiosity-Driven Multi-Goal Learning Nicolas Lair, Cédric Colas, Rémy Portelas, Jean-Michel Dussoux, Peter Ford Dominey, Pierre-Yves Oudeyer Vigil Workshop at Neurips 19

→ Can be used as an internal reward function to measure whether an internally generated goal (= a sentence) is achieved by the goal-parameterized policy being learnt

Figure 3. Reward function and policy learning, a: F1-score of the reward function after convergence on \mathcal{G}^{train} (grey) and on the 5 types of goals from \mathcal{G}^{test} (colors). b: Average success rates on \mathcal{G}^{train} (plain) and \mathcal{G}^{test} (dashed) for various policy/critic architectures. c: Average success rates on \mathcal{G}^{test} , split into the 5 generalization types. Mean +/- std over 10 seeds for all figures.

Models of child development data

Self-organization of vocal development

Two-layers of LP—based intrinsically motivated learning:
1) Active choice self-exploration vs. imitation
2) If self-exploration: active goal selection

(Moulin-Frier, Nguyen and Oudeyer, Frontiers in Cognitive Science, 2014)

Emergent developmental stages

(Oller, 2000)
Regularities and diversity of individual developmental trajectories

120

120

Curiosity-driven discovery of language as a tool to manipulate the environment

(Forestier and Oudeyer, CogSci 2017)

Teacher algorithms for curriculum learning of Deep RL in continuously parameterized environments

Rémy Portelas¹, Cédric Colas¹, Katja Hofmann², Pierre-Yves Oudeyer¹ ¹Inria (FR) ²Microsoft Research (UK) CoRL 2019

Learners

VS

Continuous set of tasks/envs

(through procedural generation)

Methods - The CTS Framework

(CTS: Continuous Teacher-Student)

• The teacher samples parameters mapping to *distributions* of tasks/envs

⇒ creates <u>a curriculum where tasks/envs distributions</u> <u>evolve</u>

- The Deep RL Student is a black-box
- The parameter space may contain:
 - unfeasible subspaces
 - irrelevant dimensions
 - non-linear difficulty

ALP-GMM: sample tasks/envs distributions that maximize absolute learning progress

Example of mastered tasks after training

ALP-GMM + short DRL student

Performance analysis on Hexagon Tracks

ALP-GMM Good **generalization** to **diverse** obstacles

Random Poor learning and generalization

https://github.com/flowersteam/teachDeepRL

Applications in educational technologies

Technologies for fostering efficient learning and intrinsic motivation

Experiments with
> 1000 children in more than
30 schools in Aquitaine

KidLearn project:

Personalization of teaching sequences (curriculum) in Intelligent Tutoring Systems

(Clement et al., Journal of Educational Data Mining, 2015; in prep.)

ZPDES-CO algorithm: ALP + warm-start graph + final choice by child

(Clement et al., Journal of Educational Data Mining, 2015; in prep.)

Exercise Type

Inside **the zone of proximal development**

choose exercises <u>stochastically</u> according to the learning progress

Exercise Type:

- aiming at different KC;
- or presented in a different modality;

(Clement, Roy, Oudeyer and Lopes, 2015, Journal of Educational Data Mining)

Exercise Type

Inside **the zone of** proximal development choose exercises

stochastically according to the learning progress

After being able to solve A1, extend the ZPD

A3

Exercise Type

Inside **the zone of proximal development**

choose exercises <u>stochastically</u> according to the learning progress

Always a probability of choosing other exercise types due to:

- individual characteristics
- problems in the knowledge graph

B1

A2

B2

C1

Learning impact

Motivational impact during learning sessions

Intrinsic motivation score session S3 (IMI questionnaire)

Take away

Fundamental role of spontaneous developmental exploration

- Autonomous goal exploration
- Driven by empirical learning progress measured at various scales of time and space

Scales to real world (high-dimensions, limited time, distractors) Can be used to guide human edTech design

developmental trajectories + Enables discoveries (tool use, language)

Organizes

(Gottlieb and Oudeyer, Nature Rev. Neurosc., 2018.; Oudeyer et al., 2016;)

Developmental autonomous learning

Thanks to:

PhDs/Postdocs/engineers: A. Baranes, F. Benureau, B. Clément, C. Colas, S. Forestier, P. Fournier, M. Lapeyre, A. Laversanne-Finot, Y. Mollard, C. Moulin-Frier, M. Nguyen, A. Péré, R. Portelas, P. Rouanet.

Senior colleagues: F. Kaplan, M. Lopes, O. Sigaud, J. Gottlieb, L. Smith, V. Hafner, H. Sauzéon, M. Chetouani, C. Kidd, L. Rat-Fisher. Funding/Sponsors:

European Research Council

Research

Why is (curiosity-driven) exploration of forward model less efficient than goal exploration?

Forward model exploration: Knowing many ways to produce a few effects
Goal exploration: Knowing a few ways to produce many effects

Combining population-based and Deep-RL based IMGEPs

(Extension of Colas et al., GEP-PG: Decoupling exploration and exploitation in Deep RL, ICML 2018)

Curiosity applications beyond video games and robots:

Automated scientific discovery

Oil-in-Water Droplets Self-Organization

Grizou et al. (2018) Exploration of Self-Propelling Droplets Using a Curiosity Driven Robotic Assistant, Arxiv/1904.12635, Cronin Lab, Univ. Glasgow.

Automatized robot experiments

- 8 experiments running in parallel
- Specialized and stationary working stations
- Oils and surfactant handled separately

Intrinsically motivated goal exploration in a continuous game of life

Continuous Game of Life Lenia, Bert Chan (2018)

Reinke, C., Etcheverry, M., Oudeyer, P-Y. (in prep) Intrinsically Motivated Exploration for Automated Discovery of Patterns in Morphogenetic Systems

Random Experiments (mostly dead or uniform patterns)

Random Exploration

Intrinsically Motivated Goal Exploration

32% spatially localized patterns (« animals »)

Goal exploration process

Intrinsically Motivated Exploration for Automated Discovery of Patterns in Morphogenetic Systems

Take away

Fundamental role of spontaneous developmental exploration

- Autonomous goal exploration
- Driven by empirical learning progress measured at various scales of time and space

Scales to real world (high-dimensions, limited time, distractors) Can be used to guide human edTech design

developmental trajectories + Enables discoveries (tool use, language)

Organizes

(Gottlieb and Oudeyer, Nature Rev. Neurosc., 2018.; Oudeyer et al., 2016;)

Developmental autonomous learning

Thanks to:

PhDs/Postdocs/engineers: A. Baranes, F. Benureau, B. Clément, C. Colas, S. Forestier, P. Fournier, M. Lapeyre, A. Laversanne-Finot, Y. Mollard, C. Moulin-Frier, M. Nguyen, A. Péré, R. Portelas, P. Rouanet.

Senior colleagues: F. Kaplan, M. Lopes, O. Sigaud, J. Gottlieb, L. Smith, V. Hafner, H. Sauzéon, M. Chetouani, C. Kidd, L. Rat-Fisher. Funding/Sponsors:

European Research Council

Research

CURIOUS: intrinsically motivated modular multi-goal Deep RL

Distractors

(Colas et al., to appear at ICML19)

Deep RL based IMGEPs (Curious) vs. Population-based IMGEPs: + better generalization - Slower initial discoveries

Modeling overlapping waves of tool use development

(Forestier and Oudeyer, CogSci, 2016; ICDL-Epirob, 2016)

The Ergo-Robots (2012)

Jean-Michel Alberola Sir Michael Atiyah Jean-Pierre Bourguignon Alain Connes Raymond Depardon et Claudine Nougaret Nicole El Karoui Ergo-Robots (INRIA-LABRI) Misha Gormov Takeshi Kitano David Lynch Beatriz Mihazes Satellife Pinack (ESA) + Grand Collisionneur de hadrons (LHC Patti Smith Hiroshi Sugimoto Cédric Villani Tadanori Yokoo Don Zagier

Fondation*Cartier* pour l'art contemporain

« Mathematics, a beautiful Elsewhere » Fondation Cartier for Contemporary Art, Paris

with Mikhail Gromov *Mathematician*

and David Lynch *Film maker, artist*

http://flowers.inria.fr/ergo-robots.php

Self-organization of culturally shared speech sounds

individuals (de Boer, 2001; Oudever, 2006/19; Moulin-Frier et al., 2011)

Future research: learning to represent experiments

(Frontiers in Neuroscience, 2014; ICDL-Epirob 2014; See also Scientific Reports, 2016; PNAS, 2017; Nature Reviews Neuroscience, in press)

Combining population-based and Deep-RL based IMGEPs

(Extension of Colas et al., GEP-PG: Decoupling exploration and exploitation in Deep RL, ICML 2018)

Related to various research lines

Psychology (1940-60) (Berlyne, White, Kaga, Festinger,)		
Theoretical biology nd cognitive modeling	Theoretical machine learning and RL	Evolutionary computing
Varela, Maturana (autopoïesis, 1974)	Fedorov et al. (active learning, Optimal exp. Design, 1972) Andreae et al. (novelty search with RL, 1978)	
	Schmidhuber (LP based RL, 1991)	Stanley et al., 2008; Mouret,
Oudeyer, Kaplan et al. (2003)	Barto, Singh et al. (IMRL, 2004)	Doncieux et al. (novelty search with GA/ES)

a

→ Focus on modeling spontaneous curiosity-driven exploraition in humans

- → Understanding how it can be made to work for acquisition of motor skills in high-dimensional real world (robotic) bodies (*Developmental robotics*)
- → Understanding how it links with developmental organization

Back to human experiments

How spontaneous exploration is structured during free play

Α

- Exploration follows a growth in complexity actively controlled as predicted by models
- Factors influence exploration patterns: task difficulty, novelty, size of the choice space

(Baranes, Oudeyer and Gottlieb, 2014 Frontiers in Neuroscience)

(Baranes and Oudeyer, TAMD 2009)

Simple example

Learning and exploration dynamics

84

Good generalization

(1) Robots are useful to better conceptualize the impact of the **body**

The example of walking

Morphology and self-organization of biped locomotion

Tad McGeer (McGeer, 1990), Nagoya Univ. (2005)

Morphological computation

- Collaboration with Labri/Univ. Bordeaux
- Collaboration with J-R. Cazalets, Integrative Neuroscience
 - Institute, Bordeaux

The Acroban humanoid (Ly, Lapeyre, Oudeyer, 2011, IROS)

Body:

morphology, synergies and self-organization

(Ceccato et Cazalets, 2009) Neuroscience, Univ. Bordeaux

dy of properties of various feet, including passive spring loaded articulations (Humanoids 2014)

(a)bended thighs

(b)straight thighs

A human-like bended leg shape reduces the motion amplitude on the upper body by 45% and increases the head stability by 30% (Humanoids 2013; IROS 2013)

From affordances to vocal interaction Playground Experiments

- Autonomous learning of novel affordances and and skills, e.g. object manipulation
- Self-organization of developmental trajectories, bootstrapping of communication
- Automatic formation of internal distinctive concepts for « self » vs « objects » vs « others »
- Regularities/diversity
- ➔ New hypotheses for understanding information seeking and curiosity in infant development

(Oudeyer et al., 2007 IEEE TEC) (Kaplan and Oudeyer, Front. Neuroscience, 2007)

Development of sensorimotor skills

MACOB: Modular population-based IMGEPs

(Forestier et al., 2017)