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Summary

The statistical problem is only a proxy

Nature does not shuffle the examples. We do!
From interpolation to extrapolation

Related work

Linear invariant regression

Invariant regularization and nonlinear models

N o Uk wbhRE

Aiming for zero training errors makes sense




Why this work?

THE STATISTICAL PROBLEM IS ONLY A PROXY FOR THE REAL TASK




The AlexNet moment (2012)
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ImageNet image classification challenge.
CNNs break through in 2012.




The AlexNet moment (2014-present)
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/17, 2016 Artificial Intelligence Swarms Silicon

Valley on Wings and Wheels

The valley has found its next shiny new thing in A.L., and
financiers and entrepreneurs are digging in with remarkable
exuberance.

¢h 25, 2016 The Race Is On to Control Artificial

Intelligence, and Tech’s Future

Amazon, Google, IBM and Microsoft are using high salaries and
games pitting humans against computers to try to claim the
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A couple decades earlier (1988)

320+160
mouse-written

characters,
and a _{r
convolutional
network

The same code was later used for the 1989 “LeNet” paper,
with a whopping 9000 training examples and 2000 testing examples

+ three decades of Moore’s law...




Why machine learning?

Absent a formal specification of what makes an image represent a —
. | g
mouse or a piece of cheese, we must

= either formulate heuristic specifications, a
and write a program that targets them.

= or rely on data, formulate a statistical proxy problem, |
and use a learning algorithm. o




Why machine learning?
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Why machine learning?
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The statistical problem is only a proxy

Example: detection of the action “giving a phone call”
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(Oquab et al., CVPR 2014)
~70% correct (SOTA in 2014)




The statistical problem is only a proxy

Example: detection of the action “giving a phone call”

[ Not giving a phone call. ]

Giving a phone call ??7?? }




The statistical problem is only a proxy

Example: detection of the action “giving a phone call”




The statistical problem is only a proxy

Example: detection of the action “giving a phone call”

The learning algorithm is statistically correct
and is also missing the point!




Dataset curation and biases

Machine learning in the 1990s
= Training set carefully curated to cover all the cases of interest.

= Actual deployments (e.g. ATT-Lucent-NCR check reading machines with CNNs.)

Machine learning in the 2010s
= Datasets are too big to be carefully curated
= Data collection biases, confounding biases, feedback loops, ...

= Machine learning algorithms recklessly take advantage of spurious correlations.




The statistical problem is only a proxy

Unbiased Look at Dataset Bias
Torralba & Efros

Nith the fa~ys on beating the latest benchmark numbers
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systems designed to exploit dataset biases ...
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2 Multiple
- environments

NATURE DOES NOT SHUFFLE THE DATA. WE DO/




Spurious correlations

Spurious correlations are
correlations that we do not expect to hold
in future use cases

What informs such an expectation?

= Substantive knowledge

= Past observations %inding stable properties>




Past observations

We do not expect spurious correlations to hold in the future.

We know this because they did not always hold in the past.

But these spurious correlations
precisely appear in the data we have

collected in the past!




Nature does not shuffle the data. We do!

We collect data

= at different points in time and in space
" in different experimental settings
= with different biases

> environments

>

Then we shuffle the records and pretend that
they are independent and identically distributed




Nature does not shuffle the data. We do!

We collect data

" at different points in time and in space
" in different experimental sai#
" with differenit

Then we shuf
they are




Multiple environments

Following Peters et al. (2016), we consider that data from each
environment e comes with a different distribution P,.

P, = P(X,Y,) fore=1,2,3..

= Training sets D, = {(x{,y;) ~ P,} are provided for some e.

= We want a predictor f(x) = y that works for many e.




From robustness
to Invariance

FROM INTERPOLATION TO EXTRAPOLATION




The robust approach

A very classic move in statistics

Minimize the largest error across training environments

JANNC ArgMiH{ max E[(Ye — f(Xe))"] - Te}
fer )

[ Training [ Squared loss [ Per-environment

environments or some other loss.. baseline




The robust approach demystified

After rewriting as a constrained optimization problem,

ArgMin M subject to Ve M > E[(Y, — f(X.)] — 7e
ferF

Proposition Subject to the Karush-Kuhn-Tucker differentiability
and qualification conditions, there exist coefficients Ao > 0 such

that the robust regression [* is a first order stationary point of the
weighted square error

C(f)=) A E[(Ye - f(Xe))]




The robust approach demystified

After rewriting as a constrained optimization problegs

ArgMin M

subject tg




The robust approach demystified

~
The robust approach guarantees a maximal

error for any distribution in this convex hull,
that is, a mixture with positive weights.

/\
— This is attained by minimizing the error for a
\L specific mixture with positive weights.

~

Although valid distributions maybe
» Pz [ reachable with negative weights,
4 they come with no error guarantees




Negative mixtures matter! “Easter bu

Consider a search engine query classification problem.
Let the X, be search engine queries observed on day e=1,2,3,4.

Queries with b Queries with b
increasing popularity decreasing popularity
. es8 “ECE seminar” e.g. “Back to school" )

~

Queries with
constant popularity
e.g. “Orange juice"

J




Negative mixtures matter! “Easter bu
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Learning stable properties

When the environments tell different stories...

4 )
= Selection bias favors pictures of a call.

m = Spurious positive correlation between
person-near-phone and person calling.

o

N

= Same selection bias for movies.

/
@W " But there are frames showing the person
-

right before or right after the call.

)




Learning stable properties

When the environments tell different stories...

are frames showing the person
right before or right after the call.

)




Learning stable properties

When the environments tell different stories...




Invariant regression

A strong requirement

Simultaneously minimize the error in each training environment.

Ve f* e ArgMin{E[(Y, — f(X.))?] }

fer
All training environments ] [ Squared loss or some other loss.

" Not necessarily possible without a bit of help.

= What does this mean in terms of mixture coefficients?




Invariance buys extrapolation powers

a

<

f™ is a stationary point of

E[(Ye — f(Xe))?]

for all e.

»

4

a

<

f7 is astationary point of

Ze /16 E[(Ye i f(Xe))z]
forall A, ...4,, € R.

»

4

These “mixture” coefficients can now be negative!




Invariance buys extrapolation powers

4 N N
Queries with Queries with

increasing popularity decreasing popularity
\_ J

Queries with A
constant popularity
¢ e.g. “Orange juice" y

An invariant regression on the
training environments is optimal
far beyond their convex hull.




Trivial existence cases

Ve f* € ArgMin {E[(Ye — f(Xe))2] }
ferF

Two cases where the invariant regression trivially exist.
" The noiseless case
Thereis f* € F such that f*(X) =Y forall X.
" The realizable case
Thereis f* € F such that f*(X,) = E|Y,|X.] whenever P(X,) > 0.




Trivial existence cases

Ve f* € ArgMin{E[(Y. — f(X.))?] }
fer

Two cases where the invariant regression exist.

= The noiseless case:

esting

- et inter .
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Playing with the function family

The invariant regression may not exist
when the environments tell different stories

Ve [ € ArgMin{E[(Y. - f(X.))"] }

feF
_ _ i but we can play with the family F. ]
=Recall substantive modeling

"Making F insensitive to the spurious correlations




Invariant representation

f

XQ[Qb Hg bf(x)zy

{Find a representation ¢ (x)

N\

Such that the regression from ¢(x) to y
IS invariant across environments

~

J




Finding the relevant variables
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“If we find a representation in which
all falling objects obey the same laws,
then we possibly understand something useful.”




/ Related work

)

INSPIRATIONS




1- Invariance and causation

Invariance as the main element for causal inference

To predict the outcome of an intervention, we rely on
="the properties of our intervention

=the properties assumed invariant after the intervention

P
Pearl’s do-calculus on causal graphs is a framework that
tells which conditionals remain invariant after an intervention.
9 Rubin’s ignorability assumption plays the same role. )

(Cartwright, 2003; Woodward, 2005, chap 6)




1- Invariance for causal inference

Discovering invariant properties
Is easier than discovering causal graphs
" Finding the structure is hard, orienting the arrows is harder.
= Maybe easier with multiple environments (Bengio 2019)
= Sometimes causal graphs do not exist at all (equilibria.)

Using invariant properties is also easy
= |f they’re invariant, they’re ready to use!




2- Invariant causal prediction \mzmuoﬁ

. &) ) (x3)
= Environments result from \ . N
interventions on a @\® 7 ®\®/ @\@/&
causal graph. é é@ﬂ é

(@) (b) (©

*The set of variables in the graph is assumed known.

= Representations ¢ merely select a subset of the variables.

If we find an invariant representation,
we have recovered the direct causes of Y.

(Peters, Bihlman, Meinshausen, 2016; Heinze-Deml, Peters, Meinshausen 2018)




3- Adversarial Domain Adaptation

" The goal is to learn a classifier that
does not depend on the environment.

L] . . -_— M 2 .‘.'u Al
= An adversarial term makes it hard O NopS o G0
. * eature ex J‘% or Gy( ;b"c,,l@%
to recover the environment label e R A [ H:> @ donan el

oL, A o
from the representation ¢(x). {E> o i e d)] \%/.

= This implies that IP((I)(Xe)) does not depend on e.
Therefore P{f(X,)} does not depend on e either. But P{Y,} might..

= Conditional ADA stratifies on Y to achieve P(¢p(X,)|Y,)lle.
Hence E(b(X,)|Y,) e instead of E(Y,|d(X,))Le.

(Ganin et al., 2015; Edwards & Storkey, 2015; Louppe et al., 2016; Li et al,



4- Robust supervised learning

ArgMin{ sp Exyoll(Y, FO)] }
fer QEDp

Max error for all distributions in a predefined

neighborhood of the training data distribution.
e.g,Dp={Q: D(Q||P) <6}

In contrast:
* We use multiple environments to define Dp.

* We invoke invariance to achieve robustness well beyond the convex
hull of the training environment distributions (long distance.)

(Bagnell 2005; Duchi et al, 2015; and others)




@ The linear case

SOLVING LINEAR INVARIANT REGRESSION




The linear least square case

4%

[ Find a matrix S

A
' N
X»{ S H v b XS'v=Xw=Y
o~

Such that v simultaneously minimizes
Y, — X, ST v||* foralle

\




Ilssues

Find S, v such that v minimizes ||Y, — X, ST v||? for all e.

" Lots of uninteresting solutions such as § = 0.

*\What matters is the nullspace of S: the censored information.

*Noncontinuity: an infinitesimal change in S can change its rank.




Characterization of the solutions

Let C¢ : R — R be convex differentiable cost functions.

Theorem 4. A vector w € R? can be written w = S'v, where

S € RPX and where v € RP simultaneously minimize C¢(S"v)

for all e € &, if and only if w' VO (w) =0 for all e € £.
Furthermore, the matrices S for which such a decomposition

exists are the matrices whose nullspace Ker(S) is orthogonal to w
and contains all the VC¢(w).




Where are the solutions?

w' ' VC(w)=w' X Xow—w'XY, =0 foralle.

These are the w than can be

interpreted as products of a
Intersection of

feature matrix S and an

ellipsoids : . .
P Invariant regression v.

7/7'%/

O is a solution




Rank of the feature matrix S

From the theorem:

The nullspace of S must contain all the gradients VC,(w)

When the gradients VC,(w) are independent, rank(S) < d — m.

Is it always the case?




High rank solutions

High rank solutions exist when the VC,(w) are linearly dependent.

-> There are coefficients 4., not all zero, such that

that such w form a
discrete set

Z A VC,(w)=0 Dimension counting says
e

—> Therefore
w is a stationary point of };, 1,C, (W)

Potentially negative

mixture coefficients again!




Exact recovery of high rank solutions

Two set of environments

= £ : the many environments we could encounter in the future.
all

Assume there is a unique invariant solution on £4;; with rank r.

"= & :them environments known at training time.

Assume that m > d — r and the environments are in generic positions.
The only invariant solution on &, of rank greater than r form a discrete set.
The solution on &,;; is one of them.

In fact the solution is uniquely identified whenm > d —r + % !




A minimal example
4 I

X{ = e X randn()

Y =X;+eXxXrandn()
Xo =Y + randn()

/
Analytical derivation of the invariant representation
E[Y|X1,Xo] = 1imXi+ 152X,
7 = cX1 + sXo E[Y|Z] = (c25) Z

(c+s)2+s2(1+e?)e—2
(¢,s) = (1,0) EY|X:] = X Invariant solution




Enumerating all the high rank solutions

Setup

= Two environments e = 1 and e = 0.5 with 10,000 examples each.
Method

= Forv € [0, 7], solve cos(v) VC;(w) + sin(v) VCys(w) =0

= Plot the cosine of the angle between w and {VC,(w)} against v.

" This cosine is zero when invariance is exactly achieved




Enumerating the high rank solutions

v =0.567r w =1[0.9181,0.0321]

v =0.591r w =[1.1908,—-0.0871]

Interpolation regime

Extrapolation regime

0.2pi

0.6pi 0.8pi pi




lnvariant
regularization

EXPANDING TO NONLINEAR MODELS




Favor solutions near the ellipsoids

Minimize a regularized cost

C eJSW)

‘4 A\

> IY, — Xowll
ne e eW
e
-I-Kz.Qe(W)
e

Something like Q,(w) = (WTVCQ(W))2 .




A more general perspective

Insert a dummy multiplier 6=1

S xwosy
) - veaw)

W

0.(0) = (G




Nonlinear version

Insert a “frozen” domain adaptation layer

v = fw) = 6

0. (w) = (

0C,
00

2
)

Regularization favors
weights w such that
no environments would
benefit from 6 #+ 1.
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Digits with misleading colors

ORWENN  0.75 0.25
LA WEXN 0.25 0.75

Y=0 1—ce e

v

During the training e € { 0.1,0.2 }.
The color is a better indicator than
the shape, but not a stable one.

The optimal classification rate on
the basis of the shape only is 75%.

Random guess is 50%.
Then we test with e = 0.9.




Colored MINIST

Training with Testing with Testing with
ec{0.1,0.2} ec€{0.1,0.2} e=0.9

Minimize empirical risk

after mixing data from 84.3% 10.1%
both environments

Minimize empirical risk

with invariant 70.8% 66.9%

regularization

*Network is a MLP with 256 hidden units on 14x14 images.

"Invariant regularization tuned high : regularization term is nearly zero.




Colored MINIST

How invariant the representation?

P(Y|H) where H is the state just before the frozen adaptation layer.
ERM IRM
1.0 1 w

4 Be=009

0.5 - : )
| | .-_ ;: I e=01




Scaling up
iInvariant regularization

Issue #1 : Numerical issues
"The regularization term is very nonconvex.
Issue #2 : Realizable problems are different...

"Both the minimal example and the colored MNIST example
are non-realizable: more data does not fix the problem.
Many real problems are not like that...




7/ Back to the
realizable case

AIMING FOR ZERO TRAINING ERRORS MAKE SENSE




Phenomenon and interpretation

POSTLABEL

Calling?
v

post

T
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g Interpretation
(e.qg., using multiple labelers)

Phenomenon




Supervised learning

The labeling process

often is designed to

be as deterministic
as possible:

Ypost = f7(X)

POSTLABEL

Calling?

Y

post

Interpretation
(e.qg., using multiple labelers)
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Supervised learning

€ donf exists 17 &
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i gesuch an AT e wraining
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often | 3 Svmp’(_Ot\ | emdstr'\but\o
be as )
as . . .
" The good : we gain invariance for free.
Yoost = --- Up to finite training set issues.
" The bad : the idea of invariant representations is vacuous.
S -- they’re all invariant!







Main points

= The statistical problem is only a proxy.

= Nature does not shuffle the examples. We shouldn’t.

= |nvariance across environments buys extrapolation powers ©
= |nvariance across environments is related to causation ©

= |nvariant representations enable invariance ©

= We need something else for the (frequent) realizable cases ®
= This is far from cooked ®




