Combining learning and reasoning: new challenges for knowledge graphs

> Frank van Harmelen Vrije Universiteit Amsterdam VU

Creative Commons License CC BY 3.0: Allowed to copy, redistribute remix & transform But must attribute

Let's first celebrate our successes!

Just some of the use cases

- Google = meaningful search _____ Yahoo, Bing
- NXP = data integration
- BBC = content re-use
- Amazon = product search
- data.gov = data-publishing

Fundamental de la construcción d

Oracle DB, IBM DB2

Reuters,

New York Times, Guardian

Best-Buy, Sears, Kmart,,

Volkswagen, Renault

GoodRelations ontology,

schema.org

Knowledge Graphs in 4 principles

- 1. Give all things a name
- 2. Make a graph of relations between the things This makes a Giant Graph
- **3. Make sure all names are URIs** This makes a *Giant Global Graph*

4. Add semantics (= predictable inference)This makes a *Giant Global Knowledge Graph*

P1. Give all things a name

"Now! *That* should clear up a few things around here!"

P3. The names are addresses on the Web

On the Web, anybody can say anything about anything

P3. The names are addresses on the Web

P1+P2+P3 = Giant Global Graph

P4. explicit & formal semantics

- assign types to things
- assign types to relations
- organise types in a hierarchy
- empose constraints on possible interpretations

± 45-100 billion facts & rules Legend Cross Domain Geography Government Life Sciences Linguistics Publications Social Networking **User Generated** Incoming Links \odot Outgoing Links 00 \odot

But the eyes of the world are elsewhere...

Supervised learning

Unsupervised learning

Reinforcement learning

Robot Motor Skill Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

A stairway?

Connectionist Data Statistics Learning

Symbolic Knowledge Logic Reasoning

A pendulum!

Connectionist Data Statistics Learning

A GOOD JOB.

Symbolic Knowledge Logic Reasoning

So let's compare

Representation

Math

$$\begin{split} \widetilde{\mathcal{L}}^{A}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(i,l)} | \mathbf{x}^{(i)}) \\ \text{where} \quad \mathbf{z}^{(i,l)} &= g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}^{(i,l)}, \mathbf{x}^{(i)}) \quad \text{and} \quad \boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon}) \end{split}$$

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

The global language of healthcare

40 years of effort, 10.000 updates every years

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scalable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

10M training samples

4.8M training games

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	$\overline{\mathbf{h}}$
Generalisable	Performance cliff	Performance cliff
	worse with more data	worse with less data
	inore data	iess data

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

"panda" 57.7% confidence

"gibbon" 99.3% confidence

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

	Symbolic	Connectionist
Construction	Human effort	Data hunger
Scaleable	+/-	+/-
Explainable	+	-
Generalisable	Performance cliff	Performance cliff

Class: 793 Label: n04209133 (shower cap) Certainty: 99.7%

Can we get them to collaborate?

Plan:

$$[sym] \rightarrow (KR) \rightarrow [sym]$$

$$data \rightarrow ML \rightarrow data$$

Simplest unification: Learning on symbols $sym \rightarrow ML \rightarrow sym$

0

- Inductive Logic Programming
- Probabilistic Soft Logic
- Markov Logic Networks

From data to symbols $data \rightarrow ML \rightarrow sym$

Ontology learning from text

- Learning class/instance distictions from text
 - Knowledge graph learning from text
- Conceptual spaces

Also covers many "classical" learning algorithms:

 \bigcirc

All of these

Engineering

ledge

- Decision tree learning
- Rule learning

 $\begin{array}{l} \forall x,y \ \mathsf{chair}(x) \land \mathsf{partOf}(y,x) \rightarrow \\ & \mathsf{cushion}(y) \lor \mathsf{armRest}(y) \end{array}$

P(cushion|chair) >> P(flower|chair)

Learning intermediate abstractions

Example: Reinforcement learning for spatial navigation

Learning intermediate abstractions

Example: Reinforcement learning for spatial navigation

Learning intermediate abstractions

Example:

Try to learn early symptoms of CRC from GP data: (symptoms, life style, diagnoses, drugs)

- 1. Raw data \rightarrow no meaningful signal
- 2. Raw data + KG = abstracted data \rightarrow

significant results

Learning intermediate abstractions $data \rightarrow MI \rightarrow Sym \rightarrow KB \rightarrow Sym$

Learning ("imitating?") to reason

Test Dataset	Hop 0			Hop 1			Hop 2			Hop 3			Hop 4		
	Р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F
Linked Data ^a	0	0	0	80	99	88	89	97	93	77	98	86	-	-	-
Linked Data ^b	2	0	0	82	91	86	89	98	93	79	100	88	-	-	-
OWL-Centric ^c	19	5	9	31	75	42	78	80	78	48	47	44	4	34	6
Synthetic	32	46	33	31	87	38	66	55	44	25	45	32	29	46	33

^a LemonUby Ontology

^b Agrovoc Ontology

^c Completely Different Domain

Learning ("imitating?") to reason

Knowledge-based auto-ML

- Algorithmic configuration
- Hyperparameter tuning
- Selection of training examples

Concluding remarks

Plan:

$$[sym] \rightarrow (KR) \rightarrow [sym]$$

$$data \rightarrow ML \rightarrow data$$

 The future of AI depends on combining Thinking fast and thinking slow, or Perception and cognition, or Learning and reasoning

2. Lots of useful results by "loose coupling"

3. Develop a theory of **reusable components** and **compositional patterns**

4. In the style of knowledge engineering & software engineering

 The future of AI depends on combining Thinking fast and thinking slow
Perception and cognition
Learning and reasoning

2. Lots of useful results by "loose coupling"

- Develop a science of reusable components and compositional patterns
- 4. In the style of knowledge engineering software engineering "X" engineering