## Foundations for Fair Algorithmic Decision Making



#### Krishna P. Gummadi Max Planck Institute for Software Systems

Algorithmic decision making
Refers to data-driven decision making
By learning over data about past decision outcomes
Increasingly influences every aspect of our life

#### Search, Recommender, Reputation Algorithms





#### Risk Prediction Algorithms









## Concerns about their fairness

Discrimination in predictive risk analytics

## **Machine Bias**

There's software used across the country to predict future criminals. And it's biased against blacks.

## Opacity of algorithmic (data-driven) decision making





#### Implicit biases in As Germans Seek News, YouTube Delivers Far-Right Tirades

A researcher found the platform's recommendation system had steered viewers to fringe and conspiracy videos on a neo-Nazi demonstration in Chemnitz.



## Focus on discrimination

- Discrimination is a specific type of unfairness
- Well-studied in social sciences
  - Political science
  - Moral philosophy
  - Economics
  - Law
    - Majority of countries have anti-discrimination laws
    - Discrimination recognized in several international human rights laws

But, less-studied from a computational perspective

What is a computational perspective? Why is it needed?

## **Defining discrimination**

■ A first approximate normative / moralized definition:

wrongfully impose a relative disadvantage on persons based on their membership in some salient social group e.g., race or gender

Challenge: How to operationalize the definition?

 How to make it clearly distinguishable, measurable, & understandable in terms of empirical observations

## Need to operationalize 4 fuzzy notions

- 1. What constitutes a relative disadvantage?
- 2. What constitutes a wrongful imposition?
- 3. What constitutes based on?
- 4. What constitutes a salient social group?

## Case study: Recidivism risk prediction

COMPAS recidivism prediction tool

- Built by a commercial company, Northpointe, Inc.
- Estimates likelihood of criminals re-offending in future
   Inputs: Based on a long questionnaire
   Outputs: Used across US by judges and parole officers
- Trained over big historical recidivism data across US
   Excluding sensitive feature info like gender and race

COMPAS Goal: Criminal justice

- Idea: Nudge subjective human decision makers with objective algorithmic predictions
  - Algorithms have no pre-existing biases
  - □ They simply process information in a consistent manner

- Learn to make accurate predictions without race info.
  - Blacks & whites with same features get same outcomes
  - No disparate treatment & so non-discriminatory!

|              | Black De  | fendants | White Defendants |            |  |
|--------------|-----------|----------|------------------|------------|--|
|              | High Risk | Low Risk | High Risk        | Low Risk   |  |
| Recidivated  | 1369      | 532      | 505              | <b>461</b> |  |
| Stayed Clean | 805       | 990      | 349              | 1139       |  |

|              | Black Defendants   |     |  |  |  |  |
|--------------|--------------------|-----|--|--|--|--|
|              | High Risk Low Risk |     |  |  |  |  |
| Recidivated  | 1369               | 532 |  |  |  |  |
| Stayed Clean | 805                | 990 |  |  |  |  |

| False  | Positive | Rate: | 805 / ( | (805 + | 990) | = 0.45 |
|--------|----------|-------|---------|--------|------|--------|
| i aisc |          | nate. |         |        | 550  |        |

| White Defendants                 |      |  |  |  |  |
|----------------------------------|------|--|--|--|--|
| High Risk Low Risk               |      |  |  |  |  |
| 505                              | 461  |  |  |  |  |
| 349                              | 1139 |  |  |  |  |
| <b>349 / (349 + 1139) = 0.23</b> |      |  |  |  |  |

|              | Black Defendants |          |  |  |  |
|--------------|------------------|----------|--|--|--|
|              | High Risk        | Low Risk |  |  |  |
| Recidivated  | 1369             | 532      |  |  |  |
| Stayed Clean | 805              | 990      |  |  |  |

False Positive Rate: 805 / (805 + 990) = 0.45

| White Defendants   |      |  |  |  |  |
|--------------------|------|--|--|--|--|
| High Risk Low Risk |      |  |  |  |  |
| 505                | 461  |  |  |  |  |
| 349                | 1139 |  |  |  |  |
|                    |      |  |  |  |  |

**349 / (349 + 1139) = 0.23** 

False Negative Rate: 532 / (532 + 1369) = 0.29

**461 / (461 + 505) = 0.48** 

|              | Black De  | fendants | White Defendants |          |  |
|--------------|-----------|----------|------------------|----------|--|
|              | High Risk | Low Risk | High Risk        | Low Risk |  |
| Recidivated  | 1369      | 532      | 505              | 461      |  |
| Stayed Clean | 805       | 990      | 349              | 1139     |  |

False Positive Rate: 805 / (805 + 990) = 0.45 >> 349 / (349 + 1139) = 0.23

False Negative Rate: 532 / (532 + 1369) = 0.29 << 461 / (461 + 505) = 0.48

- ProPublica: False positive & negative rates are considerably worse for blacks than whites!
  - Constitutes discriminatory disparate mistreatment



## **COMPAS** study raises many questions

Why does COMPAS show high racial FPR/FNR disparity?
 Despite being trained without race information

Can we train COMPAS to lower racial FPR/FNR disparity?

Analysis:

## Why does COMPAS classifier show high racial FPR & FNR disparity?

## How COMPAS learns who recidivates By training over data about past outcomes

|                        | F <sub>1</sub>   | F <sub>2</sub>   | <br>F <sub>m</sub>   | Past<br>Outcomes    |
|------------------------|------------------|------------------|----------------------|---------------------|
| Defendant <sub>1</sub> | X <sub>1,1</sub> | x <sub>1,2</sub> | <br>Х <sub>1,m</sub> | Recidivated         |
| Defendant <sub>2</sub> | x <sub>2,1</sub> |                  | X <sub>2,m</sub>     | <b>Stayed Clean</b> |
| Defendant <sub>3</sub> | X <sub>3,1</sub> |                  | X <sub>3,m</sub>     | <b>Stayed Clean</b> |
|                        |                  |                  |                      | •••                 |
| Defendant <sub>n</sub> | X <sub>n,1</sub> | x <sub>n,2</sub> | <br>X <sub>n,m</sub> | Recidivated         |

Challenge: Learning a decision function over the features that separates the two classes of people

## How COMPAS learns who recidivates



## How COMPAS learns who recidivates



 By finding the optimal (most accurate / least loss) linear boundary separating the two classes
 How does COMPAS find (compute) it?

### Learning (computing) the optimal boundary

- Define & optimize a loss (accuracy) function
   Capturing error (inaccuracy) in individual predictions
- 1. Minimized over all examples in training data

$$L(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$
 minimize  $L(\mathbf{w})$ 

Functions should allow for efficient optimization
 Many loss functions used in learning are convex

## How COMPAS learns who recidivates



How did COMPAS find most accurate linear boundary?

## How COMPAS learns to discriminate



Observe the most accurate linear boundary

## How COMPAS learns to discriminate



Observe the most accurate linear boundary

## How COMPAS learns to discriminate



- Observe the most accurate linear boundary
- □ Makes few errors for yellow, lots of errors for blue!
  - Causes disparate mistreatment inequality in error rates

## The cause of error rate disparity

To minimize overall error, classifiers minimize sum of individual-level errors

min 
$$\mathsf{P}(\mathsf{y}_{\mathsf{pred}} \neq \mathsf{y}_{\mathsf{true}}) \approx \min \sum_{i=1}^{N} (y_i - d_{\mathbf{w}}(\mathbf{x}_i))^2$$

 Which doesn't guarantee equal avg. group-level errors
 Overall Error Rate: P(ypred ≠ ytrue | race=B) ≠ P(ypred ≠ ytrue | race=W) False Positive Rate: P(ypred ≠ ytrue | ytrue = +1, race=B) ≠ P(ypred ≠ ytrue | ytrue = +1, race=W) False Negative Rate: P(ypred ≠ ytrue | ytrue = -1, race=B) ≠ P(ypred ≠ ytrue | ytrue = -1, race=W) Synthesis:

## How to train non-discriminatory classifiers? [www '17]

### How to learn to avoid discrimination

Specify discrimination measures as learning constraints
 Optimize for accuracy under those constraints

min  $P(y_{pred} \neq y_{true})$ 

S.t. 
$$P(y_{pred} \neq y_{true} | race=B) = P(y_{pred} \neq y_{true} | race=W)$$

#### The constraints embed ethics & values when learning

No free lunch: Additional constraints lower accuracy!
 Need race info in training to avoid disp. mistreatment!

## The technical challenge

□ How to learn efficiently under these constraints?

min 
$$P(y_{pred} \neq y_{true}) \approx \min \sum_{i=1}^{N} (y_i - d_w(\mathbf{x}_i))^2$$
  
s.t.  $P(y_{pred} \neq y_{true} | race=B) = P(y_{pred} \neq y_{true} | race=W)$ 

Problem: The above formulations are not convex!
 Can't learn it efficiently

#### Need to rewrite the constraints

$$\min \quad \sum_{i=1}^{N} (y_i - d_{\mathbf{w}}(\mathbf{x}_i))^2$$

s.t.  $P(y_{true} \neq y_{pred} | race=B) = P(y_{true} \neq y_{pred} | race=W)$ 



Idea: Avg. misclassification distance from boundary for both groups should be the same



Idea: Avg. misclassification distance from boundary for both groups should be the same

$$\begin{array}{ll} \min & \sum_{i=1}^{N} (y_i - d_{\mathbf{w}}(\mathbf{x}_i))^2 \\ \text{s.t.} & -\epsilon \leq \frac{1}{|\sigma^i|} \sum_{\sigma^i} \min(0, y_i d_{\mathbf{w}}(\mathbf{x}_i)) - \frac{1}{|\varphi|} \sum_{\varphi} \min(0, y_i d_{\mathbf{w}}(\mathbf{x}_i)) \leq \epsilon \\ & \underbrace{\text{Concave}}_{\begin{subarray}{c} \mathbf{f} \\ \mathsf{P}(\mathsf{y}_{\mathsf{true}} \neq \mathsf{y}_{\mathsf{pred}} \mid \mathsf{race}=\mathsf{B}) \ \mathsf{P}(\mathsf{y}_{\mathsf{true}} \neq \mathsf{y}_{\mathsf{pred}} \mid \mathsf{race}=\mathsf{W}) \end{array}$$

# Can be solved efficiently Using Disciplined Convex-Concave Programming DCCP [Shen, Diamond, Gu, Boyd, 2016]

## **Evaluation: Do our constraints work?**

Gathered a recidivism history dataset

- Broward Country, FL for 2013-14
- Features: arrest charge, #prior offenses, age,...
- Class label: 2-year recidivism
- Traditional classifiers without constraints
   Acc.: 67% FPR Disparity: +0.20 FNR Disparity: -0.30
- Training classifiers with fairness constraints
   Acc.: 66% FPR Disparity: +0.03 FNR Disparity: -0.11

## Lessons from the COMPAS story Take-aways for ethical machine learning

## High-level insight: Ethics & Learning

- Learning objectives implicitly embody ethics
   By how they explicitly define trade-offs in decision errors
- Traditional objective accuracy reflects utilitarian ethics
   The rightness of decisions is a function of individual utilities
   The desired function is maximizing sum of individual utilities
- Lots of scenarios where utilitarian ethics fall short
   Change learning objectives for other ethical considerations
   E.g., non-discrimination requires equalizing group-level errors

Three challenges with ethical learning

#### Operationalization:

How to formally interpret fairness principles in different algorithmic decision making scenarios?

#### Synthesis:

How to design efficient learning mechanisms for different fairness interpretations?

#### Analysis:

What are the trade-offs between the learning objectives?

Two operationalizations of discrimination: disparate treatment & disparate mistreatment Are they sufficient for all scenarios? Discrimination in different scenarios

- What if training data labels were biased?
  - Require equal group acceptance error rates [AISTATS '17]
- Can requiring parity result in all groups being worse-off?

## Parity outcomes are not pareto-optimal



Both groups are worse off with parity boundary B2! Both groups prefer pareto-optimal B1 over B2 Discrimination in different scenarios

- What if training data labels were biased?
   Require equal group acceptance error rates [AISTATS '17]
- Can requiring parity result in all groups being worse-off?
   Yes! Parity outcomes are non pareto-optimal [NIPS '17]
   Allow disparity when no groups is worse-off than parity
- Why not pick group-specific decision boundaries?

Reverse discrimination by group-specific boundaries



Both groups prefer B2 over B1

Blue group is envious of pink group; claims reverse discrimination

## Envy-free group-specific boundaries



Blue group prefers B1 and pink group prefers B2 No group is envious of another; NO reverse discrimination! **Discrimination in different scenarios** 

- What if training data labels were biased?
   Require equal group acceptance error rates [AISTATS '17]
- Can requiring parity result in all groups being worse-off?
   Yes! Parity outcomes are non pareto-optimal [NIPS '17]
   Allow disparity when no groups is worse-off than parity
- Why not pick group-specific decision boundaries?
  - Need to avoid reverse-discrimination [NIPS '17]
  - Allow group-specific boundaries only when they are envy-free

Looking Forward:

From Non-Discrimination To Fair Algorithmic Decision Making



Social Welfare Theory [KDD'18, NIPS'18] [WWW'18, AAAI'18] Moral Philosophy





#### **Foundations for Fair Algorithmic Decision Making**

View fairness principles through a computational lens

- Operationalize the principles in learning-based decision making
- Key challenges: Interpretation, Synthesis and Analysis

## **BACKUP SLIDES**









Beyond disparate mistreatment:

Is there more to discrimination than equalizing error rates?

## The non-discrimination principle

□ A first approximate normative definition:

wrongfully impose a relative disadvantage on persons based on their membership in some salient social group e.g., race or gender

Challenge: How to operationalize the definition?

 How to make it clearly distinguishable, measurable, & understandable in terms of empirical observations **Operationalizing four fuzzy notions** 

What constitutes a salient social group?

What constitutes based on?

What constitutes a relative disadvantage?

What constitutes a wrongful imposition?

## **Operationalizing four fuzzy notions**

What constitutes a salient social group?

#### What constitutes based on?

- 1. Using group info. in **training or deployment [COMPAS]**
- 2. Using group info. in **deployment**, **but not training [WWW '17]**

#### What constitutes a relative disadvantage?

- 1. Disparity in outcomes for similar users across groups [COMPAS]
- 2. Additionally, disparity in error rates across groups [WWW '17]
- What constitutes a wrongful imposition?

## Ethics & Algorithmic decision making

#### Societal need: Ethics for algorithms

All algorithms err, but not all errors the same

class: 793 label: n04209133 shower cap certainty: 99.7%



| Turkish - detected - | Ŷ | 4) | ÷ | English -         | ē | <b>₩</b> Ø |
|----------------------|---|----|---|-------------------|---|------------|
| o bir aşçı           |   |    |   | she is a cook     |   |            |
| o bir mühendis       |   |    |   | he is an engineer |   |            |
| o bir doktor         |   |    |   | he is a doctor    |   |            |
| o bir hemşire        |   |    |   | she is a nurse    |   |            |

Ethical errors make use of algorithms untenable

#### Scientific curiosity: Ethics through algorithmic lens

- New interpretations of fairness principles
- Better understanding of trade-offs between interpretations
- Building learning systems & computing their consequences

## **Computational perspective of ethics**

Physical symbol system hypothesis:

 A physical symbol system has the necessary and sufficient means for general intelligent action

-- Simon & Newell

Two physical symbol systems: Humans & Machines

#### Hypothesis about ethics:

- Ethical actions are a form of intelligent actions
- Goal: Explore the limits of the ethics hypothesis
   Both for societal benefits and scientific curiosity

## So far, explored discrimination ethics

- Showed that it is possible to capture many nuanced interpretations in computational decision making
- Computational interpretations raise new scenarios
   previously overlooked by human decision makers
   Many of which are beyond cognitive abilities of humans

## **Collaborators within MPG**

