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Science of science

Reputation and impact in academic careers

Universality of citation distributions: Toward
an objective measure of scientific impact
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We study the distributions of citations received by a single publi-
cation within several disciplines, spanning broad areas of science.
We shaw that the probability that an article &s cited ¢ times has
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much more or much less than 1o others. This may happen for
several reasons, including uneven number of cited papers
article in different fields or unbalanced cross-discipline citations
(11). A paradigmatic example is provided by mathematics the
highest 2006 impact factor (1F) (12) for joarnals in this category
(Jownal of the American Mathematical Society) is 2.55, whereas
this figure is 10 times larger or mere in other disciplines (for
example, in 2006, New England Journal of Medicine haé 1F 51.30,
Cell had IF 29.19, and Nature and Science hac IF 26.68 2né 30.03,

particular value of ¢ is the same. Moreover, we show that ¢f
zllows us to properly take into 2ccount the differences, within 2
single discipline, between articles published in different years.
This provices 2 stroag validation of the use of ¢r as an unbiased
relative indicator of seientific impact for comparison across ficlds
&nd years,

Variability of Citation Statistics in Different Disciplines
First, we show explicitly that the distribution of the pumber of
articles published in some year &nd cited a certain number of

'ts.peaiv:l\)
The existence of this bias is well-known (8, 10, 12) and it is
widely recognized that comparing bare citation bers is

nappropriate. Mamy methods have been propased 1o alleviste
this problem (13-17), They are based on the general idea of
normalizing ctation pumbers with respect to some properly
chosen reference standard. The choice of a suitable reference
standard, which can be a journal, &ll journals in a discipline, or
a more complicated set (14), is a delicate ssue (18), Many
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quality of both and careers of
scentists in the absence of complete systemic information. How-

ever, the relation between reputation and career growth of an

387,103 publication years. Dstaset [A] refess to 100 top<ited
physicists, [B] 1o another set of 100 highly prolific physiasts, (C]
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the diff ta-
data (10-13). As the are b ) inc gly com- tion plays a key role in driving a paper’s citation count early in

mea in evaluation scenarios throughout science, it is cracial to
better understand what the citation measures actually represent
in the context of scientists’ careers. Moreover, how does repu-
tation affect a scientist's access to ey resources, the incentives to
publish quality over quantity, and other ki cisions along the

its citation life cycle, before a tipping point, after which rep-
utation has much less influence relative 1o the papers citation
ount, In science, perceived quality, and decisions made based

on those perceptions, Is increasingly linked to ditation counts.
Shedding light on the complex mechanisms driving these

career path (14-18)? In adéition, what role does reg play
in the mentor-matching process within academic institations, in
the effectiveness of single/double blinding in peer review, and in
the reward system of saence (14, 15, 19)7

It is sgasnst this background that we have developed a quan-
titative framework with the goal of isolsting the effect of author
reputation upon citstion dynamics, Specifically, by controlling
for time- and suthor-specific factors, we quantify the role of
author r!p.lmuon an the citation life cycle of individaal publications
at the micro level. We use 2 lvnsn.nhnal career dataset from
Thomson Reuters Web of Science comprising 430 highly cited
scientists, 83,693 articles, and 7,577,084 citations tracked over
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not only better evaluation
of sclentific cutputs but also a more transparent evaluation of
the scientists producing them.
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Correspondence

Growing time lag
threatens Nobels
'Iheun:hgbaween repocting
ntific discovery worthy of
a \obel prize and the awarding
of the medal has increased, with
waits of more than 20 years
becoming common. fthis trend
continues, some candidates
might not live long encugh to
attend their Nobel ceremonies.
Befare 1940, Nobds were
awarded moee than 20 years after
the original discovery for anly
about 1% of physics, 15% of
chemistry and 24% of physiology
or medicine prizes, respectively.
Sirce 1985, bowever, such
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playing cards) as a step towards

Zoos and aquaria woeldwide
attract more than 700 millice
visits every year Theyare
therefoee well placed to make
moee peaple aware of the
impariance of iodiversity

a prime target of the United
Nations Strategic Plan for
Biodiversity 2011-20.

We surveyed spproximately
000 visitoes 10 30 z00s and
aguaria in 19 countries (see
gorsbure.com/vwiByf), More
respondents showed improved
understanding of biodiversity
after their visit (75.1% compared

lengthy detays bave featured dairy products by focusing an producing sustaisable livesiock  with §9.3% before) and more
in 0%, 52% and 45% of these ruminant grazing systems would  (Nafure 507, 52-34,2014). That  could idemify an individual
awards, respectively, be damaging for biodiversityand  amount corrasponds 103.5-7%  action that would balster
Thrlmm;lng;\w interval forlhtglob-l climae. of: 2,000-calocie-a-day diet, biodiversity after their visit
n repocting discoveries vert ding on the cut and type {58.8% compared with 50.5%
and their formal recognition can gxaaund ulv inko anirmal af meat. Sucha movewoukdalso  bedare),
be fitted 10 an exponential curve [l progein, they do so inefficienly; make for a more equitable ghotal Regrettably, increased
(see"The long road to Sweden'), they therefoce require mach more  distribution of animal- product awareness does not necessarily
with data paints scattered sbout [l land 1o produce 3 given amount consamgrion; these products change behavior, The workls
the mean value. of meat o milk than ruminams comprise around 48% of the 200 and aquariem communities
As thisaverage interval Sed an diets that indhade grain. average diet in the United States, mnx&ohq;vnodnwlmp«un'
becomes longer, 50 the average Growing enough fodder tosatisfy  for example (S. Boah Jand social changes 1o
age ot which laureates are demand would require thelarge:  etral Proc. Natl Acad. Sci USA assist conservation.
awarded the prize goes up. By scale expansicn of grazing lands 110, 2061720620, 2015). Andrew Moss Chester Zoo, UK
the end of this century, the (see gonaturecoen/7mib3y) —a Impasing a global dietary Exic Jensen Ursdversity of
prizewinners’ predicted average leading cause of béodiversityloss,  imit of 5% red meat 2s pant Warwick, Coventry, UK.
ape for receiving the award tropical deforestation and carbon of a 10% maximeum for all Markus Gusset World
is likely to excoed his or her diaxide emissions. animal-tased products would Association of Zoos and
P d P y(data The ] impacts enable more people to be fed Aguariems, Gland, Switzerland.
not shown). Given that the of meat and dairy production using less land. For example, markus gussed@waza.ong
\obr pnntunml \uu:rdrd Mald nsiead bndd:nml eliminating livestock and
pe by gent effoets to using existing agricultural
d mmt halth lands to grow crops for direct Apmteintlntspells
vcnrfabk institution, of| gru:ng and increase \-xlds Baman consumplion insicad trouble
Santo Fortunato® Aalto mlmd.h.f.ul.rudymdim of Sor livestock fodder could
University, Finland. Evestock. Promoting extensive feed an extra 4 billion peaple The gene CYLD is so named
santo fortunato@gmail com grazing without tackling dermand (£, 5, Cassidy et @l Emviron Rex. because one of its mutant forms is
"On behaif of € co-authors, see would do more harm than good. Lm &OMDIS 2013), thereby associated with cylindromatosis,
gonature.comy/ommas for full list. K.ML.J. 20 Ermga gord g the which causes skin tumours,
—— David R, Williams, Andrew groenhouse-gss emissions and The CYLD protein is an
- Balmford University of Diodivessity Joss associated with  enzyme; its active site in humans
Livestock: tackle Cambridye, UK. conversion of natural babitats. ConRains a cysteine residue at
mmm ekhje2@cam, ac ok “This would also reduce many position 601 (denated a3 Cin the
other environmental impactsof  ane-letter amino-acid code). The
Among many otherwise ludble agricalture that refate to the use amino-acid sequence followi
ungnfkm;. Mark Essler and Livestock: limit red water, fertilizer and fossil fods.  this cysteine (C) is qm,-.c({'f
calleagues limiting meat mumﬁhn Brian Machovina, Kenneth leucine (L) and aspartate (D).
feedstuffs foe livestock 10 fibrous I. Fedey Florida Internatioma! Whaat are the odds of that?
fodder, such #s grass and silage Mark Eisler and co-authoes University; Miams; and The David Boone Indiamae University
(see Nature 507, 32-34;2014). advocate eating only 300 grams FRatrchuld Tropical Botanic Garden,  School of Medicine — South
However, we beieve that any of red meat 8 week (roughly (.—md(mbln Flomh USA, Bend, Indiana, USA,
atempt o meet the rapid growth  the volume of three decks of b il com dush ek
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Network science

* Analysis and modeling
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Community structure

Communities: sets of
tightly connected nodes

* People with common interests
* Scholars working on the same

field

* Proteins with equal/similar
functions

e Papers on the same/related
topics




Community detection

What for?

* Organization
* Node classification
* Missing links
e Effect on dynamics
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Difficult problem!

I11-defined problem:
* Whatis a community/partition?
* Whatis a good community/partition?



Three basic questions

1) How to detect communities?
2) How to test community detection algorithms?
3) How to make partitions robust?
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How to detect communities?

Global optimization

Principle:

* Function Q(P) that assigns a score to each partition

 Best partition of the network -> partition corresponding
to the maximum/minimum of Q(72)

Problem: Answer depends on
the whole graph -> it changes if
one considers portions of it or if
it is incomplete




How to detect communities?

Global optimization

Principle:

* Function Q(?2) that assigns a score to each partition

 Best partition of the network -> partition corresponding
to the maximum/minimum of Q(72)

Problem: Answer depends on
the whole graph -> it changes if
one considers portions of it or if
it is incomplete



Modularity optimization

1 d?
Q:EZ (lc 4m>

c=1

E =mc?

M. E. J. Newman, M. Girvan, Phys. Rewv. E 69, 026113 (2004)

M. E. J. Newman, Phys. Rev. E 69, 066133 (2004)
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Modularity optimization

1 d?
Q:EZ (lc 4m>

c=1

E =m c?

M. E. J. Newman, M. Girvan, Phys. Rewv. E 69, 026113 (2004)
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Modularity optimization

1 d>
Q:EZ (lc 4m>

c=1

2
E=mc
M. E. J. Newman, M. Girvan, Phys. Rewv. E 69, 026113 (2004)

M. E. J. Newman, Phys. Rev. E 69, 066133 (2004)

Goal: find the maximum of Q over all possible network
partitions

Problem: NP-complete (Brandes et al., 2007)!



Modularity optimization




Resolution limit

modularity’s scale

S. F. & M. Barthélemy, PNAS 104, 36-41 (2007)
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Local optimization

Principle:

* Communities are local structures

* Local exploration of the network, involving the subgraph
and its neighborhood

Advantages:
* Absence of global scales -> no resolution limit
* One can analyze only parts of the network



Local optimization

Implementation:

* Function Q(C) that assigns a score to each subgraph

* Best cluster -> cluster corresponding to the maximum/
minimum of Q(C) over the set of subgraphs including a
seed node

Example: Local Fitness Method (LFM)

Fitness of cluster C: %y ‘W
/

kS 2,

Je = e T h ) " dz WQ\

A. Lancichinetti, S. E, J. Kertész, New. J. Phys. 11, 033015 (2009)







Local optimization: OSLOM

Basics:

« LFM with fitness expressing the statistical significance of
a cluster with respect to random fluctuations

» Statistical significance evaluated with Order Statistics

First multifunctional method:
* Link direction

* Link weight

* Overlapping clusters

* Hierarchy

A. Lancichinetti, F. Radicchi, J. J. Ramasco, S. E,, PLoS One 6, ¢18961 (2011)



Local optimization: OSL

Order Statistics Local
Optimization Method

™~
% s1.oM

Home
Welcome to OSLOM's Web page o
OSLOM means Order Statistics Local Optimization Method and it's a clustering algorithm Publications
! fi 3
designed for networks, Taam
Download the code (beta version 2.4, last update: September, 2011) Contacts

The package contains the source code and the instructions to compile and run the program.
You will also get a simple script which we implemented to visualze the clusters found by
OSLOM. This script writes a pajek file which in turn can be processed by pajek or gephi.

This is a nice example of how the visualzation looks like.
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http://wWw.oslom.org/ |



How to test community
detection algorithms?

Question: how to test clustering algorithms?

Answer: checking whether they are able to recover the
known community structure of benchmark graphs

Planted l-partition model (Condon & Karp, 1999)

Ingredients:

1) p=probability that vertices of
the same cluster are joined

2) g=probability that vertices of
different clusters are joined

Principle: if p > q the groups are communities



The LFR benchmark

Realistic feature: power
law distributions of
degree and community
size

A. Lancichinetti, S. F.,, F. Radicchi,
Phys. Rew. E 78, 046110 (2008)

https://sites.google.com/site/andrealancichinetti/files/

https://github.com/networkx/networkx/blob/master/networkx/
algorithms/community/community_generators.py



The LFR benchmark

A comparative analysis

| Author Label Order |
Girvan & Newman GN O(nm?
Clauset et al. Clauset et al. O(nlog”n)
Blondel et al. Blondel et al. O(m)

Guimera et al. Sim. Ann. parameter de%endent
Radicchi et al. Radicchi et al. O( )

m=/n
Palla et al. Cfinder O(exp(n))
Van Dongen MCL Onk?), k <n parameter
Rosvall & Bergstrom Infomod parameter dependent
[ Rosvall & Bergstrom Infomap O(m
Donetti & Munoz DM O(n®)
Newman & Leicht EM parameter dependent
Ronhovde & Nussinov RN O(nP), B~ 1

A. Lancichinetti, S. F, Phys. Rev. E 80, 056117 (2009)



The LFR benchmark

A comparative analysis
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Consensus clustering

Problem: Stochastic (non-deterministic) methods yield
many result partitions: which one shall one choose?

Solution: Searching for the partition which is most similar, on
average, to the input partitions (median or consensus partition)

Difficult combinatorial optimization task: greedy solution
(consensus matrix)

A. Lancichinetti, S. E, Sci. Rep. 2, 336 (2012).



Consensus matrix

Definition
* Matrix D whose entry Dj; is the frequency that vertices i
and j were in the same cluster in the input partitions

Starting point: network G with n vertices, clustering method

A.

= Apply A on G n; times -> n, partitions

* Compute the consensus matrix D: D; is the number of
partitions in which vertices i and j of G are assigned to the
same cluster, divided by np

= All entries of D below a chosen threshold t are set to zero

= Apply A on D n; times -> n,, partitions

= |f the partitions are all equal, stop (the consensus matrix
would be block-diagonal). Otherwise go back to 2.



A simple example

LA

Original Graph Consensus Matrix
(I) Djj =1
D;j = 3/4
D;; = 2/4
(11) M D, = 1/4
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Consensus in dynamic networks

= Succession of snapshots, corresponding to overlapping time
windows of size At: [t,, t,+At], [t+]1, t;t1+AL], [t -At, t ]

" D, = number of times vertices i and j are clustered together,
divided by the number of partitions corresponding to
snapshots including both vertices

Tracking dynamic clusters: C; — Cy1q 7

Strategy: computing the Jaccard index of C, with all clusters of
the partition at time t + 1, and pick the cluster with the highest
value. Same procedure to find the “father” of cluster C,

Criterion:

= A and B are each other’s best match: A “survives” to time t +1

= A and B are not each other’s best match: A “dies” at time t
and B is considered as a new cluster.



Tracking dynamic clusters:
the APS citation network
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Summary

1) What is a community? No unique answer! Definition is
system- and problem-dependent

2) Magic method? No such thing! Domain dependent
methods?

3) Global optimization methods have important limits: local
optimization looks more natural and promising

4) Consensus clustering useful technique to find robust
partitions

5) Attention on validation
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