

Managing Big Energy Data for (Really) Smart Grids

Torben Bach Pedersen Daisy@CS@Aalborg University

Agenda

- Why Big Energy Data?
- What is Big Energy Data?
- What do we do with Big Energy Data?
 - And **how** do we do it?

Why Big Energy Data?

- Societal challenges and solutions
 - Global warming greenhouse gas emission cuts
 - Energy supply security reduce energy purchased from outside
 - Nuclear risks nuclear phaseout
- Solution: more energy from renewable energy sources
 - EU 20-20-20 goals,...
 - DK: 2020: 50% of electricity from RES, 2035: 100% electricity and heat from RES, 2050: 100% RES in all sectors
- Implication: move from fossile to electric energy
 - EVs and heatpumps
 - Danish electricity (not energy) consumption **tripled** in 2050

Uncertainties of Renewables

- Fluctuating Energy
 - Wind power
 - Photo Voltaic
 - Waves / Tides

• Hydro is easy...

14

12

10

8

6 -

4 -2 -0 -

Energy Production [kW]

CRES

22 kWp

(Greece)

Too Much or Too Little Energy

2008 DK West figures

Today (2008)

Recent DK figures for electricity produced by wind, % of total

- December 2013 57.4%
- January-June 2014: 41.2%
- 2014: 39.1%
- The future is here today!

Flexible Demand To The Rescue

- Dishwashers and washing machines can run flexibly
- EVs can be (de-) charged flexibly during parking intervals
- Heatpumps can run flexibly within a comfort temperature interval
- Up to 80-85% of the (tripled) future demand is flexible

Future Vision: Smart Grids

Smart Grids

- Increased flexibility of energy networks via ICT (monitor, control)
- Goals: more RES, active customer involvement, balancing demand/supply

Smart Meter: foundation for smart grids (bi-directional communication)

Data Management Challenges

- Large-Scale Distributed Systems
 - Number of stakeholders, number of of nodes, amount of data
- High Availability / Fault Tolerance
 - Basically available, soft state, eventual consistent
- Near-Realtime Data Synchronization and Integration
 - High update rates, low latency, protocol/schema/format heterogeneity
- Advanced Analytics
 - Time series forecasting
 - Balancing
 - Classification, C
 - Clustering,
 - Association rule mining

EGC, January 27, 2015

What is Big Energy Data?

- Variety: complex data of many different types
 - Consumption data from smart meters, sockets, and appliances
 - Production data from wind, solar, power plants,...
 - Flexibility data what demand and supply is (how) flexible?
 - Prices, weather, ...
- Volume: a lot of it
 - EU consumption per prosumer per sec: 20+ trillion values/day
 - Then go to sockets/appliances and add the other data types
- Velocity: fast data
 - Real-time smart meter readings
 - So fast it hasn't even happened yet: everything is *(re-)forecasted*
- We will focus on variety today (velocity+volume tomorrow)

The MIRABEL Project

EU FP7 project (call 4) Objective: Novel ICT Solutions for Smart Electricity Distribution Networks

mirabel-project.eu

Timeline: 01/2010 to 04/2013

Consumers (households, SMEs,..) have some flexible,

- schedulable demand
- such as dishwashers, washing machines, EVs, heat pumps, …
- ⇒ specified and treated as **flex-offers (FOs)** with **explicit** flexibility in
 - Time (flexibility interval)
 - Amount of electricity

Use Case: Charging an EV

- A consumer arrives home at 10pm and wants to recharge the electric car's battery at the lowest possible price by the next morning. Completion time is set to 6 am.
- 2. The prosumer node generates an FO
- **3**. Based on weather forecasts, the trader's node schedules the FO to start energy consumption at 3am and sends back a message to the prosumer's node.
- 4. The consumer's node of EDMS starts supplying energy to the electric vehicle at 3am.

Use case: Balancing

EGC, January 27, 2015

Class specifications referenced through attributes of the FlexEnergy class.					
< <enumeration>></enumeration>	EnergySourceType	PriceConstraint			
FlexEnergyType	+classification: String	+minPrice: Monev[01]			
+PRODUCTION	, , , , , , , , , , , , , , , , , , ,	+maxPrice: Money[01]			
+CONSUMPTION					

Flex-Offer Processing Cycle

Flex-offer Aggregation Overview

- Large set of input FOs aggregated into small set of output FOs
- Disaggregation does the reverse, after macro-level scheduling
- Always possible to correctly disaggregate scheduled flex-offers
- Number of aggregated flex-offers as small as possible
- Loss of flexibility in the aggregation as small as possible
- Aggregation+scheduling+disaggregation within 10 min
- 3-step aggregation (grouping, bin-packing,N-to-1 aggregation)

Forecasting+Scheduling Overview

- Forecasting
 - Transparent forecast model creation/usage/maintenance
 - Support for single and multi-equation models
 - Awareness for external influences, e.g., weather
 - Forecasting for demand, supply, FOs
 - Continuous evaluation and maintenance required
- Scheduling
 - Find best schedule for (agg) FOs, fix start times and energy flex.
 - Forecasted energy production, consumption, and market prices
 - Minimize the evaluation function (cost of imbalances)

$$c(S,M) = \underbrace{\sum_{i=1}^{m} p_{I-}^{i} \left| E_{I}^{i} \right|}_{E_{I}^{i} < 0} + \underbrace{\sum_{i=1}^{m} p_{I+}^{i} E_{I}^{i}}_{C_{I+}} + \underbrace{\sum_{k=1}^{n} \left(\sum_{j=1}^{n_{k}} p_{k}^{j} E_{k}^{j} \right)}_{C_{FO}} + \underbrace{\sum_{i=1}^{m} p_{M-}^{i} \left| E_{M}^{i} \right|}_{E_{M}^{i} < 0} - \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M-}^{i} \left| E_{M}^{i} \right|}_{C_{M-}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M-}^{i} \left| E_{M}^{i} \right|}_{C_{M-}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M-}^{i} \left| E_{M}^{i} \right|}_{C_{M-}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M-}^{i} \left| E_{M}^{i} \right|}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M-}^{i} \left| E_{M}^{i} \right|}_{C_{M-}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E_{M+}^{i}}_{C_{M+}} + \underbrace{\sum_{i=1}^{m} p_{M+}^{i} E$$

Prohibitive to find optimal solution, so approximation used.

Component Interplay and Timing

MIRABEL Distributed System

Reflect the Harmonized Role Model for energy markets

Flex-Offer Storage and Querying

 How to store and query flex-offers and other MIRABEL data in an object-relational data warehouse ?

MIRABEL DW Context

EDMS NODE ARCHITECTURE

- DW accepts many insert/analytical queries from analytical components
- A suitable DW schema is need for efficient query evaluation

Storage Contributions

We:

- Present a generic DW schema supporting all levels of the EDMS hierarchy
- Discuss the complexities of the schema compared to traditional DW schemas
- Discuss alternative data modeling strategies
- Evaluate schema alternatives using typical queries from the MIRABEL project

- More on the MIRABEL EDMS: "Data Management in the MIRABEL Smart Grid System", EnDM 2012
- More on the MIRABEL DW: "Real-time Business Intelligence in the MIRABEL Smart Grid System", BIRTE 2012

MIRABEL DW: Schema

- Based on the MIRABEL data model
 - Common information model (CIM) by IEC
 - Represent major objects in an electric utility enterprise
 - Harmonized Electricity Market Role Model by ebIX[®], EFET and ENTSO-E
 - Define administrative data internally interchanged between European electricity markets

None of the existing models focus on storage of energy-related entities

- Schema is complete for the prototype of the MIRABEL system
- Represents energy data essential in the MIRABEL context
 - Actors of European Electricity Market,
 - Flex-offers,
 - Time series of energy, power, and prices

MIRABEL DW: Actors and Roles

MIRABEL DW: Actors and Roles

- For every actor-role, the schema captures:
 - Time-series
 - Flex-offers

MIRABEL DW: Flex-Offers

MIRABEL DW: Time Series

MIRABEL DW: Complete Schema

MIRABEL DW: Alternative Designs

Flex-offer and timeseries schema alternatives

Denormalized

D_timeSeries

tid	nam e	entityRolel D	typeld	
1	TS1	0	1113	
2	TS2	1	1114	

F_timeSeriesInterval

tid	timeIntervalld	value
1	1000	11.2
1	1001	11.4
2	1000	101.1
2	1001	101.2

F_timeSeries

tid	name	entityRolel d	typeld	 timeIntervall d	valu e
1	TS1	0	1113	1000	11.2
1	TS1	0	1113	1001	11.4
2	TS2	1	1114	1000	101. 1
2	TS2	1	1114	1001	101. 2

MIRABEL DW: Alternative Designs

Flex-offer and timeseries schema alternatives

Array-based

D_timeSeries

tid	nam e	entityRolel D	typeld	•••	
1	TS1	0	1113		
2	TS2	1	1114		
F_timeSeriesInterval					

tid	timeIntervalld	value
1	1000	11.2
1	1001	11.4
2	1000	101.1
2	1001	101.2

tid	name	entityRolel d	typeld	 startTim eInterva IId	valueArray
1	TS1	0	1113	1000	{ 11.2, 11.4 }
2	TS2	1	1114	1000	{ 101.1, 101.2 }

F_timeSeries

MIRABEL DW: Experiments

Experiment setup

- Real energy consumption data: 963 time series, 32.1M values (MeRegio),
- Synthetically generated 3.1M flex-offers
- Standard server machine
 - Linux server with 16 GB RAM, 2x Intel Xeon CPUs, 4 SATA 7200RPM disks
 - PostgreSQL 9.1, tables are "fully vacuumed"
- Queries executed in round-robin fashion 5 times

Flex-Offer Schema Experiments

Flex-offer queries

- Q1: Compute total flexibility per flex-offer
- Q2: Compute sum of all scheduled (fixed) energy
- Q3: Builds a time series that represents amounts of scheduled (fixed) energy

Results

- MDW variant is the fastest
- MDW variant uses optimal amount of space

Time Series Schema Experiments

Time series queries

- Q4:Compute energy balance for 24h considering total demand and supply
- Q5: Find time series with average energy exceeding an average time series by 25%

Results

- MDW variant is the fastest
- MDW variant uses optimal amount of space

MIRABEL DW: Research Directions

- (Future) distribution of DW
 - The schema will be replicated on all nodes of EDMS
 - Node holds only relevant data and of specific granularity

- Challenges
 - Propagation of data through the hierarchy, caching
 - Specialized versions of the schema for different types of nodes such that queries formulated on generic schema can be translated to the specialized schemas

MIRABEL DW: Conclusions

- Designed a generic DW schema for complex energy data
- The schema has a number of interesting complexities
 - Facts about facts
 - Composed non-atomic facts
- The schema can be used by a different nodes of hierarchical system
- Evaluated different alternatives (denormalization, arrays)

Aggregating Flex-Offers

- How to we aggregate and disaggregate flex-offers?
- How do we compose many small units of flexibility into fewer, larger, and more useful units, while retaining most of the flexibility ?

Flex-Object (Generalization)

- Flexibility object (flex-object) represents the usage of a resource (e.g., energy) over time as well as flexibilities

Flex-Object Instance

Flex-Object Database Vision

- The energy management system of the utility company manages a large number of flex-objects
- Flex-object database is needed: •
 - Flex-objects as first-class citizens
 - Dedicated or storing other types of data
 - Supported functionality:
 - Different types of flexibility
 - Complex hierachies such as energy distribution grids
 - Supported queries:
 - Flexibility availability queries min/max amounts available at a time interval
 - Adjustment potential queries distribution of amounts that can be potentially injected into (or extracted from) a given time interval
 - Fixing queries alter the plan based on the amount to inject or extract
 - Scheduling queries instantiates flex-objects to match a time series
 - Flex-object aggregation queries combines "micro" flex-objects into fewer "macro" flex-objects
 - <u>Flex-object disaggregation queries</u> explode an instance of a "macro" flex-object into instances of "micro" flex-offers EGC, January 27, 2015 43

Flex-offer (FO) life cycle Recap

Aggregation

Takes N and produces M flex-objects

Disaggregation

• Takes M and produces N instances of flex-objects

 $M \ll N$

Additional requirements for aggregation and disaggregation:

- Compression and flexibility trade-off requirement
- Aggregate constraint requirement, e.g., to limit "how big" aggregate flex-offers are

- Incremental Update Requirement (for the online scenario)
 - New flex-objects are continuously received
 - Earliest starting time of existing flex-objects are approaching

Need to be able to efficiently integrate changed flex-objects into aggregates

Three solutions presented in the paper:

N-to-1 aggregation

- + Satisfies the amount balance requirement
- Does not satisfy compression/flexibility, aggregate constraint, and the incremental updates requirement
- Loses most of flex-object flexibility

N-to-M aggregation

Based on prior grouping and bin-packing

+ Satisfies compression/flexibility, aggregate constraint requirements

- Does not satisfy the incremental update requirement
- Incremental N-to-M aggregation
 - + Satisfies all requirements

- To aggregate flex-objects, we follow these steps
 - Align profiles (partially instantiate flex-objects)

N-to-1 aggregation

- To aggregate flex-objects, we follow these steps
 - Partition slices if needed

• To aggregate flex-objects, we follow these steps

- Build a new profile by summing all corresponding amounts for each

 Different alignments result in different shapes of profiles and remaining time flexibilities, e.g.,

- As in previous example, tf(f1) = tf(f2) = tf(f3)=3, but tf(fA)=1.

- The idea is to allow alignment such that
- Tf(fA)=min_(f in F){tf(f)}
- Three most important alignments ensuring this property:
 - Start-alignment
 - Soft left-alignment
 - Soft right-alignment

N-to-1 aggregation: Start-alignment

• Start-alignment

Pros

- Spreads out amounts throughout the time extent of all individual flexobjects
- Makes larger amounts available as early as possible

Cons

Might result in very long profiles, which might be inconvenient to handle

EGC, January 27, 2015

• Soft-right/left alignment

Pros

Short profile with concentrated amounts in the left/right

Cons

- Not always possible to achieve hard left/right alignments
- Amounts are not availabe early in time
- Summary of alignments
 - Time flexibility of an aggregate depends on the flex-object with smallest time flexibility

Disaggregation

- N-to-1 aggregation is conservative
- Disaggregation is feasible for every instances of aggregated flex-objects

• Disaggregation ensure the balance of amounts

- **Grouping:** partition flex-objects into groups based on grouping parameter values being within given thresholds
- **Bin-packing:** further partition each group to satisfy aggregate constraints (count, total min/max,...)
- N-to-1 aggregation: as before, applied on every group

Time Flexibility Tolerance

|5-3|≤ TFT

Earliest Start Tolerance

EGC, January 27, 2015

Parameter Settings

- The user will choose from a number of meaningful predefined parameter settings
 - Short/long profiles
 - Amount as early as possible
 - ...

Incremental N-to-M aggregation

Main contribution

- Incremental grouping
- Incremental optimization
- Incremental bin-packing
- Incremental N-to-1 aggregation

Incremental N-to-M aggregation

Evaluation of the incremental N-to-M aggregation

- A synthetic flex-object dataset from the Mirabel project
- PC with Quad Core Intel R Xeon R E5320 CPU, 16GB RAM, OpenSUSE 11.4 (x86 64)

Scalability Experiment

Variable Parameters

- Flex-object count: 50k ... 1000k
- Grouping parameters
 - EST = 0, 250
 - TFT = 0, 6
- BP: enabled, disabled

Fixed Parameters

 BP ensures aggregated flexobjects with at least 2 hours of time flexibility

EGC, January 27, 2015

Incremental Behavior

Variable Parameters

 Number of inserts/deletes: 500..256k

- Flex-object count: 500k
- BP: disabled
- Grouping parameters
 - EST = 0
 - TFT = 0

Comparison w. partial baselines (grouping only, non-incremental)

Variable Parameters

- Flex-object count: 50k ... 1000k
- Partial baselines
 - 1. Hierarchical clustering
 - 2. Similarity Group By (Silva, et al.)

- BP: disabled
- Grouping parameters
 - EST = 250
 - TFT = 6

Grouping Parameter Effect

Variable Parameters

- Grouping Parameters
 - EST
 - TFT

- Flex-object count: 500k
- BP: disabled

Group optimization phase effect

Variable Parameters

- Flex-object count: 50k ... 1000k
- Group optimization phase: enabled, disabled

- BP: disabled
- Grouping parameters
 - EST = 0
 - TFT = 6

Bin-packing effect

Variable Parameters

- Flex-object count: 50k ... 1000k
- BP: enabled, disabled

- BP ensures aggregated flex-object with at least 2 hours of time flexibility
- Grouping parameters

Aggregation Conclusions

- Flex-objects allows planning of various processes, e.g., energy use
- A database handling flex-objects is needed
- Aggregation and disaggregation are two most important operations/queries
- Presented 3 aggregation techniques
- Experiments with the incremental N-to-M approach
 - Compression and performance of aggregation depends on grouping parameters
 - Aggregation and disaggregation can be done in linear time (BP-off)
 - When flex-object change marginally, incremental aggregation allows saving lots of aggregation time
 - Optimization step is effective
 - Grouping step is as fast as efficient non-incremental baselines

Aggregation Future Work

- Design the components of the flex-object database
 - Flex-object storage
 - Visualization
 - Techniques to process queries
 - Techniquse to optimize queries
- Support other types of flexibility

>Flex-Offer Aggregation Experiment

Situation today:

- BRP buys energy 24 hours in advance
- > BRP is responsible for imbalances
- Imbalances are penalized

Our additions/scenario:

- Smart-grid CPS is introduced
- 1 household defines 1 flex-offer
- Flex-offers used for consumption corrections
- Flex-offers are available 1 hour before delivery
 - > 10 minutes for *scheduling*
 - > 50 minutes for *aggregation+disaggregation*

+

Experiment

C =

- Generate 100k flex-offers based on real data
- Use real energy prices from Slovenia
- Day ahead schedule has "correct amount", but amount is "incorrectly distributed"

BRP minimizes the cost function:

+

Cost of energy to be bought or

sold on the market

Flex-Offer Aggregation Experiment

THE EFFECTS OF FLEX-OFFER-BASED BALANCING

BRP costs with and without aggregation (reduce^A) while varying grouping parameter values (1000 EUR)

MIRABEL Prototype

Balancing electricity supply and demand in near real-time

MIRABEL In action

MIRABEL Experimental Results

- 7-13% BRP cost reduction
- 13-50% peak-load reduction
- Increase of base-load
- Improving RES integration significantly
 - 70% of the negative impact of fluctuating renewables can be neutralized if 15% of the energy consumption is flexible and intelligently controlled by the BRP.
- Households can reduce energy **bills** by 10-20%.
- With energy storage: up to 50% **CO²** reduction
- Aggregation+scheduling better+faster than just scheduling
- Even better with less conservative flexibility assumptions

Ongoing Project: Totalflex

- "The vision of TotalFlex is to develop a cost-effective, market-based system that utilizes total flexibility in energy demand and production, taking balance and grid constraints into account"
- <u>www.totalflex.dk</u>
- Extending MIRABEL downwards into the home...
 - Home automation integration: device level measurements/control
 - Prediction of consumption/flexibility at *device* level: auto-gen Fos
- ...and **outwards** to capture more aspects
 - More advanced FO aggregation and analysis
 - Modeling heatpumps, etc., as FOs
 - Balancing demand and supply in more aspects
 - Help DSO distribution grid management, e.g., avoid congestions

Totalflex Balance Aggregation

- Initial flex-offer aggregation considers:
 - Only the **market** dimension
 - Not the **physical grid** dimension
- A large flex-offer can violate local capacity constraints
 - Perhaps in combination with other flex-offers
 - Example: charging several EVs in a single street not enough spare capacity
 - Can cause black-out (too little power, frequency drops)
 - Reverse example: getting excess solar power out of a rural area
 - Can cause white-out (too much power, frequency rises)
- Observation
 - Supply and demand can (partly) cancel out each other locally
- Idea:
 - Aggregate flex-offers together to achieve (local) balance

Flex-offers

Positive – Negative

Mixed flex-offer

Flexibility loss example

Why do we aggregate flex-offers?

- Trade on the market macro flex offer
- Reduce the planning complexity
- Stable electricity grid
- Handle imbalances
- Provide anonymity

Balance aggregation - Input

Balance aggregation - Grouping

Energy

+

Balance aggregation - Aggregate

Balance aggregation example

EGC, January 27, 2015

Simple greedy approach

- Pick largest (negative) flex-offer of the group, f_min
- balance = GetBalance(f_min)
- Iterate within the group
 - Pick the f with balance equal/closest to –balance
 - Aggregate with the currently aggregated
 - Update balance
 - Stop when balance is no longer reduced
- Start again in the same way

Exhaustive greedy approach

- Pick largest (negative) flex-offer of the group, f_min
- balance = GetBalance(f_min)
- Iterate within the group
 - Try all combinations
 - Pick the ONE that reduces the absolute balance the most
 - Update balance
 - Stop when balance is no longer reduced
- Start again in the same way

4 experimental setups

- 1st setup
 - Profiles from 2.5 to 7.5 hours long (production and consumption)
 - Time flexibility from 1 to 3 hours (production and consumption)
- 2nd setup
 - profiles are from 2.5 to 7.5 hours long (consumption)
 - Double length profiles for consumption
 - Half number for production flex offers
 - Same time flexibility between production and consumption
- ^{3rd} setup
 - profiles are from 2.5 to 7.5 hours long (consumption)
 - Double length for production
 - Half number for production flex offers
 - Less time flexibility for production
- ^{4th} setup
 - profiles are from 2.5 to 7.5 hours long (consumption)
 - More than double length profiles for production
 - Half number of production flex offers
 - Less time flexibility for production
 - Less energy flexibility for production

Absolute balance results

Flexibility loss results

Aggregated flex-offers counts

EGC, January 27, 2015

Execution time results

Balance Aggregation Summary

- Balance aggregation is feasible
 - We can achieve low balance (if possible)
- However, there is a tradeoff
 - Between balance, flexibility loss and processing time
- To get good balance
 - Sacrifice some time flexibility
 - Use more processing time
- The best technique depends on the scenario
 - For some scenarios, start aligment works well
 - For others, simple/exhaustive greedy works better

Totalflex Flexibility Forecasting

Flexibility Detection Study

- Initial study
 - Flexibility analysis and detection in device level data
 - Based on the North American REDD dataset
 - Totalflex device level data (smart sockets) being collected s
- Analysis on device level energy consumption.
- Device flexibility analysis.
- Users' device operation behaviors and patterns.
- A comprehensive device level analysis of energy consumption data.
 - Which will form the foundation for accurate flex-detection, flexprediction, load-prediction.

REDD Data Collection

The REDD hardware architecture for data collection (adapted from REDD [4]).

Background

- Flexibility is in two dimensions:
 - Flexibility in energy profile.
 - Flexibility in time scheduling.

Flexibility: the amount of energy and the duration of time to which the device energy profile (energy flexibility) and/or activation time (time flexibility) can be changed."

Background

Energy demand and supply, before and after demand flexibility management (using flex-offer).

EGC, January 27, 2015

Background

 TotalFlex¹ project, implements a mechanism to express and utilize the notion of flexibility, using the concept of flexoffer².

¹Totalflex Project, www.totalflex.dk/Forside/ ²flex-offer, proposed in EU FP7 project MIRABEL, www.mirabel-project.eu

Device Operation Properties

- 1) There exists detectable Intra-day and Inter-day patterns in device operation.
 - (a) Weekend and Weekdays patterns are different.
 - (b) Houses exhibit general and specific intra-day and interday patterns.
- 2. There exist time and energy flexibility in device operation.
 - (a) A major percentage of energy consumption comes from flexible devices.
 - (b) An alteration in device energy profile is feasible.
 - (c) Device activation time can be shifted by some duration.
- 3. Some devices are correlated
 - (a) Highly correlated device are operated simultaneously or just after one another.
 - (b) There is some fixed sequence of device operation.

Dataset

- REDD[4] dataset
 - April to June, 2011.

House Number	Days Span	#Days	#Channels	#Devices
House 1	36	35	18	11
House 2	34	15	9	9
House 3	44	23	20	13
House 4	48	30	18	12
House 5	44	9	24	15
House 6	23	18	15	11

Data details for each house.

Device Categorization

 Evaluate devices based on the cost and benefit of utilizing it under the TotalFlex scenario.

Cost: The loss of user-perceived quality caused by accepting flexibility. (for consumers)

Benefit: The available time and energy flexibility for the device.(for energy supplier)

Device Categorization

- Categorization of devices in to three different *flex-categories*
 - Fully-flexible : High benefit at low cost
 - Semi-flexible : Benefit and cost are comparable
 - Non-flexible : Low benefit and high cost

Fully-Flexible	Semi-Flexible	Non-flexible
Dishwasher	Furnace	Bathroom_gfi
Electric_heat	Microwave	Miscellaneous
Refrigerator	Stove	Electronics
Washer_dryer	Oven	Kitchen_outlets
		Lighting

Device flex-categorization
Preprocessing

Aggregation Granularity

Aggregate data into the time granularity that we target for

Data Pre-Processing Steps

Time Series Data

Spike Removal

Distribution over various devices

Distribution Over Flexibility Types

Min, Avg, and Max power Consumption

Distribution Over Days

Weekdays Vs Weekends Distribution

EGC, January 27, 2015

Distribution of Hourly Device Operations

Daily Operation Frequency

EGC, January 27, 2015

Device Correlations

Device1	Device2	Frequency	Device1	Device2	Frequency
Oven	Washer dryer	2	Washer dryer	Oven	2
Oven	Microwave	8	Microwave	Oven	9
Oven	Electric heat	1	Electric heat	Oven	1
Dishwasher	Oven	1	Oven	Dishwasher	0
Dishwasher	Washer dryer	2	Washer dryer	Dishwaser	3
Dishwasher	Microwave	2	Microwave	Dishwasher	10
Dishwasher	Stove	1	Stove	Dishwasher	0
Washer dryer	Microwave	12	Microwave	Washer dryer	10
Washer dryer	Electric heat	1	Electric heat	Washer dryer	1
Microwave	Electric heat	8	Electric heat	Microwave	4
Microwave	Stove	6	Stove	Microwave	2
Electric heat	Stove	4	Stove	Electric heat	2
Stove	Oven	1	Oven	Stove	0

Operation sequence for pairs of devices (house 1).

Operation Properties Revisited

- 1) There exists detectable Intra-day and Inter-day patterns in device operation.
 - (a) Weekend and Weekdays patterns are different. \checkmark
 - (b) Houses exhibit general and specific intra-day and interday patterns.
- 2. There exist time and energy flexibility in device operation.
 - (a) A major percentage of energy consumption comes from flexible devices.
 - (b) An alteration in device energy profile is feasible. \checkmark
 - (c) Device activation time can be shifted by some duration $\sqrt{}$
- 3. Some devices are correlated
 - (a) Highly correlated devices are operated simultaneously or just after one another X
 - (b) There is some fixed sequence of device operation. \checkmark

Flexibility Study Summary

- Significant percentage of the total energy demand for a house can be considered to provide flexibility.
- Repeating inter-day and intra-day, house-specific or general patterns across houses.
- Potential of extracting time flexibility.
- Potential of extracting energy flexibility.
- There exist interesting correlations and sequences between device operation.
- Patterns and periodicities for device operation can be detected and predicted, even in stochastic environments.

Flexibility Study Conclusion

- User's possess flexibility in their usage patterns.
- These flexibility can be extracted with low loss of user perceived quality.
- Support the concept of the TotalFlex project of utilizing flexibility for demand management.

Future Work

- 1. Design models for flexibility- and load prediction.
- 2. Econometric analysis of flexibility.
- 3. Generation of flex-offers.

Ongoing Project: Arrowhead

- Collaborative automation
 - Equipment, people, and IT services work together to optimize
 - Largest EU FP7 project
 - FOs as the basis for a Virtual Market of Energy
 - Generic service-oriented architecture for optimal integration
 - Demonstrators/trials for residential buildings, commercial buildings, industrial processes, electromobility (EVs)
 - www.arrowhead.eu

Ongoing and Future Work

- Constraint aggregation
 - Aggregate flex-offers so that they respect grid constraints
- Demand forecasting at device level
 - Challenge of stochastic behavior
- Flexibility detection
 - Extracted from device level forecasts
 - Challenge to estimate available flexibility
- Flexibility prediction
 - What flexibility will be available tomorrow
 - Learn the behavior of users and their flexible devices
- Flex-offer generation
 - Based on predicted flexibilities
- Markets and tax schemes for flexibility
- Integration in devices and systems of systems

Big Energy Data Summary

- Why?
 - CO2 reductions, more renewable energy sources
 - Make (flexible) demand meet (renewable) supply
- What is it?
 - Time series of demand and supply
 - Flex-offers: generalized and explicit energy flexibilities
- What do we do with it?
 - (Repeated) Forecasting, scheduling, ...
 - Storage and querying in a DW
 - Aggregation (incremental, balance)
 - Flexibility detection and extraction
- Bottom line
 - Many data management challenges
 - Some domain specific, some general
 - Join the fun ☺

Key References

- <u>http://people.cs.aau.dk/~tbp</u>
- MIRABEL project: <u>http://mirabel-project.eu/</u>
- Totalflex project: <u>http://www.totalflex.dk</u>
- Arrowhead project: http://www.arrowhead.eu
- Energy Data Management workshop series@EDBT http://www.endm.org/
- Böhm et al. Data management in the MIRABEL smart grid system. EnDM 2012
- Doms et al. *MIRABEL Efficiently managing more renewable energy using explicit demand and supply flexibilities*, World Smart Grid Forum 2013 (Best Poster Award)
- Fischer et al. *Real-Time Business Intelligence in the MIRABEL Smart Grid System*. BIRTE 2012
- Khalefa et al. *Model-based Integration of Past & Future in TimeTravel*. PVLDB 5(12), 2012
- Pedersen: Energy Data Management: Where Are We Headed? EDBT/ICDT Workshops'14
- Siksnys et al. *MIRABEL DW: Managing Complex Energy Data in a Smart Grid*. DaWaK'12
- Siksnys et al. Aggregating and Disaggregating Flexibility Objects. SSDBM 2012
- Valsomatzis et al. *Balancing Energy Flexibilities Through Aggregation*. DARE 2014
- Neupane et al. *Towards Flexibility Detection in Device-Level Energy Consumption*. DARE 2014

Acknowledgements

 Many slides borrowed from MIRABEL and Totalflex project partners, colleagues, and collaborators