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Networks in molecular biology

Circadian clock in mouse (Fig: Yan et al. Plos Comp. Biol. 2008)
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Gene regulatory networks

Circadian clock (CC)
An example of a gene regulatory network involved in a cellular
response to some input signal
Involved in sustaining 24h-oscillations
Feedback loop allows for control
Cellular response to day-night alternance, meals etc...
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Gene regulatory networks

Definition of Transcriptional regulation
A gene a is said to regulate gene b if a codes for the protein A and A is
a transcription factor of gene b.
When A allows for the initiation of the transcription of b, gene a is said
to induce gene b. When A blocks the transcription, gene a is said to
inhibit gene b.

A simple definition of a gene regulatory network
A gene (transcriptional) regulatory network is a dynamical system
whose state variables are the mRNA’s concentrations (possibly the
proteins concentrations) and evolve through time.
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Reverse-engineering of gene regulatory networks

Identify complex regulatory mechanisms at work in the cell
Motivations: better understanding, predictive models for
therapeutical targetting, biomarkers, personalized medecine, ...
Main tasks related to data-mining

I Parameter estimation in gene regulatory network models
I Network inference
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Biological network Inference
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High throughput measurement techniques

Experimental techniques
DNA chips
Next Generation Sequencing methods

I RNA Seq
I Chip-seq

Data
Gene expression level of tissue at a given time point after a
long-term "run": steady state
Time-course of gene expression: expression levels measured at a
given time point for a given organism (one time-point: one
organism)
Perturbation data: Knock-out or knock-down of a gene and
measurement of the gene expression level
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Difficulties and limitations

Intrinsic noise, measurement on a cell population, measurement
noise
Limited size of data [ thousands of genes, tens of measurement]
6= BIG DATA
Missing knowledge about the timing of regulation
Nonlinearity of the behaviors
Missing observations
Other actors: role of chromatine, other kinds of regulations
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Hopes

Success of various clustering methods
Reproducibility of data and behaviors
Many other sources of knowledge/data: known functions of
proteins, list of transcription factors, protein-protein interactions,
metabolism (when relevant),...
Multiple-view data
Progress of experimental measurements and cost reduction
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Gene regulatory network inference as a learning task

Dimension reduction: clustering, biclustering
Supervised link prediction : SIRENE (Mordelet et al. 2008)
Model-free approaches to estimate the network structure:
ARACNE (Margolin et al. 2006)
Model-based and unsupervised approaches: Bayesian
networks (Pe’er et al. 2001, Segal et al. 2003, ...), graphical
Gaussian models (Strimmer et al. 2006)
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Network inference from time series
Measurements of coupling: Kramer at al. 2009, mutual
information : Zoppoli et al. 2010
Differential equations: linear equations (Chen 1999), non-linear:
S-systems (Voit et al. 2006)
Autoregressive models

I xt+1 = h(xt ) + εt , t > 0, xt : state vector, h ∈ H, εt : iid gaussian noise
Dynamic Bayesian models

I x i
t+1 = hi (Pa(i , t)) + εt , t > 0, Pa(i,t): parent state variables at time t
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Network inference with autoregressive models

Sparse linear models
I Linear autoregressive models (Opgen-Rhein and Strimmer, 2007;

Fujita et al. 2007, Shimamura et al. 2009)
I Granger causality (Shojaie and Michailidis, 2010 and 11)
I State-space models (Perrin et al. 2003, Rangel et al. 2004)
I Several order autoregressive models (Lozano 2009, Bolstad et al.

2011)
I Time-varying models (Lebre et al. 2011)
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Network inference with nonlinear autoregressive
models

Nonlinear nonparametric models
I Dynamic Bayesian Networks (Imoto et al. 2002, Husmeier et al.

2005, Li et al. 2007, Bansal et al. 2007)
I Gaussian processes for network inference (Aijo and Lahdesmaki

2009)
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Protein-protein interaction network

Protein-protein interaction network in yeast
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Experimental detection of protein-protein interactions

in vivo large scale systems:
I Y 2H high false positive rate

in vitro small scale methods: costly and laborious
I protein-arrays
I co-immunoprecipitations
I FRET, NMR
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Data

Combine indirect information on pairs of proteins with direct
information on ppi data

over-represented domains or motifs pairs
structural information, primary sequences
subcellular localization
biological functions
co-expression of genes
conservation of pairs of sequences
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Difficulties

Generally no structural information
Very few labeled edges and no negative labels
Relevant features ? Context ?
Source of knowledge: some information used as input feature
have been inferred from the outputs
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Hopes

Global improvement of datasets and databases
Better encoding of structured knowledge
Transfer learning, multi-task learning
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Existing approaches for link prediction (1): supervised
classification

Pairwise SVM [Ben-Hur and Noble 2005]
Random forest, mixture of feature experts (Qi 2008), ensemble
methods with original evolutionary features (De Vienne and AzŐ,
2012)
Supervised Learning of a kernel or a similarity

I With KCCA [Yamanishi et al. 2004], with metric learning [Yamanishi
and Vert 2005]

I With output kernel regression tree [Geurts et al. 2006,07], with
output kernel gradient boosting [Geurts et al. 2007]

Supervised classification linked to a node
I local classifiers [Bleakley et al. 2007]
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Existing approaches (2): semi-supervised and
transductive learning

Kernel Matrix completion
I Using EM [Tsuda et al. 2003] and [Kato et al. 2005]

Transductive or semi-supervised learning
I Link Propagation [Kashima et al. 2009]
I Mixture of Wishart Matrices [Dit-Yeung 2009]
I Training set expansion [Yip and Gerstein 2009]
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Extend linear autoregressive models

Network inference with linear models
Estimate B in xt+1 = Bxt + εt with a sparsity constraint
Threshold B to get an estimation of the true adjacency matrix A:

Operator-valued kernels based model
Kernel-based models for vector prediction use operator-valued
kernels (Micchelli and Pontil 2005, Caponnetto et al. 2008)
Representer theorem for semi-supervised learning (∗∗) give:
h(x) =

∑
` K (xt ,x`)c`
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Extend linear autoregressive models

Network inference with operator-valued kernels∗

xt+1 = h(xt ) + εt

h(xt ) =
∑N−1

i=1 K (xt ,x`)c`
Use the following estimate:

I Âij = sgn
(

1
N+1

∑N+1
t=1

∂h(xt )i
∂(xt )j

− θ
)

∗: collaboration with Nehemy Lim and George Michailidis
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Which matrix-valued kernel?

Let us take kγ1 as the (scalar) Gaussian kernel:
∀ (x , y) ∈ R× R, kγ1(x,y) = exp(−γ1||x− y||2).
and the matrix-valued kernel: Kγ2(x,y)ij = exp(−γ2(x i − y j)2)

Finally, K (x,y) = kγ1(x,y)B ◦ Kγ2(x,y)

Important: Sparsity of B controls sparsity of the Jacobian
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Learning h

Learning algorithm
B is estimated as well as c′s
Boosting algorithm (build H(xt ) =

∑
m hm(xt ))

I Base model: a model h defined on a random subspace
I Construction through `2-boosting
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Inference of a synthetic network in yeast [IRMA,
Cantone, 2009]

Switch-off Switch-on
AUROC AUPR AUROC AUPR

OKVAR-Boost 0.807 0.807 1 1
LASSO 0.500 0.253 0.583 0.474

Äijö 0.875 0.848 0.838 0.836
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Results on 10-size networks (DREAM3 challenge)

Ecoli1 Ecoli2 Yeast1 Yeast2* Yeast3*
Size-10 AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

OKVAR + True B 0.932 0.712 0.814 0.754 0.856 0.494 0.753 0.363 0.762 0.450
OKVAR-Boost (1 TS) 0.665 0.272 0.629 0.466 0.663 0.256 0.607 0.312 0.594 0.358

± 0.088 ± 0.081 ± 0.095 ± 0.065 ± 0.037 ± 0.022 ± 0.049 ± 0.056 ± 0.072 ± 0.099
OKVAR-Boost (4 TS) 0.853 0.583 0.749 0.536 0.689 0.283 0.653 0.268 0.695 0.443

LASSO 0.500 0.119 0.547 0.531 0.528 0.244 0.627 0.305 0.582 0.255
Team 236 0.621 0.197 0.650 0.378 0.646 0.194 0.438 0.236 0.488 0.239
Team 190 0.573 0.152 0.515 0.181 0.631 0.167 0.577 0.371 0.603 0.373

Table: AUROC and AUPR for OKVAR-Boost (λ1 = 1, λ2 = 10 selected by
Block-Stability ), LASSO, Team 236 and Team 190 (DREAM3 challenge) run
on DREAM3 size-10 networks. OKVAR-Boost results using respectively one
time series (OKVAR-Boost (1 TS)) (Average ± Standard Deviations) and the
four available time series (OKVAR-Boost (4 TS)) are from consensus
networks. The numbers in boldface are the maximum values of each
column. (* Consensus thresholds for Yeast2 and Yeast3 are different due to
their higher density and average-degree.)(EGC 2013) Network inference 29 / 50
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Protein-protein interaction network inference

V : set of nodes (corresponding to proteins)
An edge between nodes v and v ′ means a physical interaction
between proteins v and v ′
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Supervised link prediction
Edges are known for the ` first nodes (V`)
Goal: learning a predictor f : V × V → {0,1} from:

I descriptions of proteins in V` (localization, sequence ...),
I the adjacency matrix A` of the training subgraph.
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Semi-supervised link prediction

Let us use unlabeled data !
Let V`+u = {v1, ...., v`+u} : ` fully labeled nodes, u unlabeled
nodes
We assume that the description of v`+1, ...., v`+u is known
Goal: learning a predictive model f : V × V → {0,1} from
descriptions of proteins in V`+u and A`, with ` << u.
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Building a classifier f by learning similarity κy

κy : similarity between two proteins as nodes in the known graph,

Similarity-based model:

fθ(v , v ′) = sgn(κ̂y (v , v ′)− θ)

Learning a proxy of κy and choosing θ = learning the classifier fθ
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Reminder: scalar-valued kernel

Definition
A symmetric function k from V × V to IR is said to be a definite positive
kernel if and only if: For any positive integer n, for any set of n objects
(v1, ..., vn) ∈ V, for any real c1, ..., cn,∑

i,j

cicjk(vi , vj) ≥ 0 (1)

Theorem
For any positive definite kernel k on V × V, there exists an Hilbert
space F with and a feature mapping φ : V → F such that for all (v , v ′):
k(v , v ′) =< φ(v), φ(v ′) >F
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Now, let us introduce scalar-valued kernels (1)

Assumptions about the outputs
Let us assume we only know for training data, the value of the
`× ` Gram matrix Ky of an output kernel: (Ky )ij = ky (vi , vj),
ky : V × V → R
For instance, Ky is a diffusion kernel matrix
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Output Gram matrix: diffusion kernel

Only κy (vi , vj) =< y(vi), y(vj) >Fy for i , j = 1, . . . , ` are known.

Here we use the diffusion kernel [Kondor & Lafferty, 2002)] :
The Gram matrix KY`

with Ki,j = κy (vi , vj) is given by:

KY`
= exp(−βL),

where the graph Laplacian L is defined by :

L = D` − A`,

with A` the adjacency matrix and D` the diagonal matrix of
vertices degrees.
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Building the classifier f by learning an output kernel ky

∀(v , v ′) ∈ V × V, ky (v , v ′) =< y(v), y(v ′) >Fy

Let us learn to predict y with a function h : V → Fy

Then we will get: k̂y (v , v ′) =< h(v),h(v ′) >Fy

=> instead of learning a pairwise classifier, we learn a single variable
function with output values in a Hilbert space
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How to learn h ?
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Which family H of models to build ?

Output kernel tree (OK3)* and extensions

htree(v) =
∑M

m=1 1m(x(v)).ȳm

where M is the number of leaves in the tree, 1m(x(v)) = 1 if x(v)
falls into leaf m and 0 otherwise
ȳm = 1

Nm

∑n
i=1 1m(x(vi))

∗: joint work with Pierre Geurts (Geurts et al. 2006, Geurts et al.
2007) and Louis Wehenkel (Geurts et al. 2007)
Extension to boosting and random forests
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Which family H of models to build for semi-supervised
learning ?

Operator-valued kernels based models∗∗
Kernel-based models for vector prediction use operator-valued
kernels (Micchelli and Pontil 2005, Caponnetto et al. 2008)
Representer theorem for semi-supervised learning (∗∗) give:

I h(v) =
∑`+u

i=1 Kx (v , vi )ci

∗∗: joint work with Céline Brouard (PhD student) and Marie
Szafranski (Brouard et al. 2011)
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Operator-valued kernel-based model 1

Choice of Kx

Let us define an operator valued kernel Kx : V → L(Fy )

L(Fy ) is the set of bounded operators on Fy

A simple but efficient choice of Kx is Kx (v , v ′) = kx (v , v ′).Id
With kx (v , v ′) =< x(v), x(v ′) >Fx , x : V → Fx
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Operator-valued kernel-based model 2

J(h) =
∑`

i=1 ‖h(vi)−yi‖2Fy
+λ1‖h‖2H+λ2

∑`+u
i,j=1 kx ,ij‖h(vi)−h(vj)‖2Fy

Minimizing J(h) gives a closed-form solution for ĥ
as for k̂y
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Network inference on yeast ppinetwork, improvement
brought by unlabeled data

Results of Céline Brouard
10 random training/test sets
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Results of network inference: AUROC on yeast ppi net
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Results of network inference: AUPR on yeast ppi net
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Input and Output Kernel Regression (IOKR)

Take home message
Take car of the output space (choice of ky ) as well as the input space
(choice of Kx )

Issues
Kernel design, kernel learning
Multiple kernel learning / data integration
Model selection, scaling
Pre-image problem in general
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Remaining challenges in network inference

Integration of various structured prior knowledge
Scaling to a large number of genes
Experimental design: active learning
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