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Introduction

Socia.lhnetwork Concept (Galois) lattice
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Introduction

Big data and complex structures
+ Performance and scalability issues
+ Visualization issues

Each user has his/her own needs for data analysis
Data evolution and partitioning

+ Need for incremental algorithms and operations on
structures (lattices and graphs)

Solutions
+ Efficient algorithms and implementations
+ Data selection and decomposition, nested structures
» Pattern management, browsing, ....
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Social Network

= Definition

= A social structure of nodes (actors) that are related to

each other by various ties such as friendship, affinity,
collaboration, ...

= Different types of graphs
+ Simple, directed, weighted, or labeled graphs
+ One-mode or many-mode (multidimensional) data

+ Heterogeneous information networks with more than
one type of nodes and/or links
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ne-mode vs. Two-mode Networks

(Sun & Han, 2012)
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Social Network Analysis

= Many topics

+ Position analysis. E.g., leader or mediator,
core/peripheral actor

+ Influence computation and maximization
+ Network reorganization

+ Link prediction and recommendation

+ Community detection and evolution, etc.
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One-mode Data

= Interaction networks

+ A graph G =(V, E), where V is a set of vertices/nodes
and E a set of edges/links

+ E.g., friendship, co-authorship
s Example

> NN

http://mathworld.wolfram.com/AdjacencyMatrix.html
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One-mode Data

Example. Adjacency matrix
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Position Analysis

Centrality measure Interpretation in social networks

» Degree How many people can this person reach directly?

How likely is this person to be the most direct route

» Betweenness .
between two people in the network?

How fast can this person reach everyone in the
network?

» Closeness

How well is this person connected to other well-

B
Eigenvector connected people?

CNM Social Media Module — Giorgos Cheliotis (gcheliotis@nus.edu.sg)
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An Example

Table 1 The centrality and eccentricity values of the KITE nodes

Degree Betweenness Closeness Eccentricity
centrality centrality centrality
1 0214 0 0424 < ‘ Medlator
2 0.357 0.371 0.482 4
3 0357 0.322 losis 3 | &
4 0.0 0.466 4
5 0.285 0.482 <
6 0214 0.06 0.368 5
7 0.142 0 0.285 6
8 0.285 0.036 0.437 -
0.357 0.146 0.466 B
10 0214 0 0.388 -
11 0214 0.263 0.368 5
12 0.142 0 0.280 6
13 0142 0 0.280 6 Leader
14 0.285 0.203 0.378 5
15 0.07 0 0.280 6

The eccentricity of a node i is the greatest geodesic distance between i and any other node in
the network.
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Community Detection

= Find clusters in networks

+ E.g., research communities, Web groups, ...

= Methods
+ Hierarchical clustering
%+ Girvan—Newman algorithm
+ Modularity maximization

+ Cligue based methods (e.g., clique percolation
method, Freeman’s approach)

+ Biclustering (e.g., block-modeling)
+ Spectral graph partitioning, etc.

Rokia Missaoui EGC'2013 - Toulouse

13



Community Detection

= Algebraic approaches
+ Clique and n-cliques
+ Structural and regular equivalence
+ k-cores and k-components

= Algorithmic approaches

+ Larger definition of community: dense connections
within a group but sparser ones between groups

« Partition construction
+ Many algorithms (e.g. modularity maximization, ...)
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Community Detection

= Cligues and n-cliques in undirected graphs

+ Clique: subgraph of at least three nodes which are all
directly connected to one another

= A maximal clique: a clique which does not exist within a
larger one

+ n-clique: set of nodes such that the shortest distance
between each pair of them is no longer than n.
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Community Detection

= Algorithmic approaches

+ Agglomerative using for instance similarity measures
to produce dendrograms

Divisive using e.g. edge betweenness centrality

+ Graph exploration methods such as clique percolation
which produces overlapping cliques
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0

Community Detection

BEE
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Community Detection

2.000 1.667 1.000 0.867 0.600 0.195 0.050 0.000

Dendrogram (produced by UCINET)
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Link Prediction

= Objective
» Predict the link to be created between two nodes, based on the
network topology and possibly other features

. Hard when the network is sparse

s Examples
+ Predict a future link between two Web pages, two
researchers, ...
= Methods
» Learning algorithms (e.g., classification) and
probabilistic models (e.g., Bayesian networks)

» Collective prediction, e.g., Markov random field model

+ A proximity-based approach by Liben-Nowell &
Kleinberg, etc.
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Formal Concept Analysis

= FCA (Ganter & Wille, 1999)

+ Based on lattice and order theory; a conceptual
clustering approach; a data mining framework for
concepts and association rule computation

s Achievements
» Efficient algorithms for lattice construction

+ Association rule mining: minimal implication basis,
succinct representation of association rules, etc...

+ Extensions to FCA: logical, fuzzy, rough, and relational
concept analysis

» Generalization to n dimensions: triadic and polyadic CA
Many applications in different domains (SNA, CS, ....)
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Formal Concept Analysis

@ Formal context :=(G,M,/)with /| C G x M.

G = set of objects and M := set of attributes.

@ Derivation. A C G and B € M.

Al:={meM| Yvge A gim}
B'={ge G| YmeB gim}.

@ Formal concept := a pair (A, B) with A’ = B and B’ = A.
A :=extentof (A,B) and B :=intentof (A,B).
B(G,M,I) := set of all concepts of (G, M,).

@ Concept hierarchy
(A,B)<(C,D): = ACC (< D CB)

@ B(G,M,I):=(B(G,M,I),<)

Rokia Missaoui EGC'2013 - Toulouse
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Formal Concept Analysis

Theorem

B(G,M,]I) is a complete lattice in which infimum and
supremum are given by:

o (04 (42))

teT teT teT

1"
\/ (At.Br) = ((U At) ,ﬂBt) :
teT teT teT

-

B(G,M,I) is called the concept lattice of the context (G, M, /).

Rokia Missaoui EGC'2013 - Toulouse
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o

Formal context gveNT

A B C D
ACTOR

1 1 0 1 1
2 1 0 0 1
3 1 0 O O
4 O 1 1 1
5 O 1 o0 O
6 O 1 0 1

Lattice with reduced labeling

Rokia Missaoui

Formal Concept Analysis
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Concept (Galois) lattice
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Applying FCA for SNA

24
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Applying FCA for SNA

= Main contributions

+ Analysis of affiliation networks (Freeman & White,
1993)

+ Special issue of Social Networks in 1996

> E.g., analysis of interaction networks using cliques and
FCA (Freeman, 1996)

+ Stability index of a concept (Kuznetsov 2007)

+ Web communities (Rome & Haralick, 2005)

+ Folksonomy analysis (Jaschke et al., 2006)

+ Workshop on SNA using FCA (Obiedkov et al., 2007)
+ Citation analysis (Tilley & Eklund, 2007)

+ FCA in Sociology (Dugquenne & Mohr, 2008), etc.

Rokia Missaoui EGC'2013 - Toulouse 25



0

Freeman’s Approach
to Group Detection

Extract maximal cliques from a one-mode data
network

Form a formal context where objects are
individuals and attributes are maximal cliques

Construct the concept lattice
|dentify bridging cliques and edges,
Eliminate bridging edges to produce communities

Central actors are near the bottom of the lattice
while peripheral ones are in the upper part

Rokia Missaoui EGC'2013 - Toulouse 26



Formal context

jects are actors and attributes are maximal cliques

2

10
11
12
13
14
15

27
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Concept Lattice

Supremum = ({1, ..., 15}, &)
Extent Intent
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Concept Lattice

Peripheral actor

N\

15

Cliques A, B, C, ..., H at the 1st level

Concept ({6, 7, 14}, G)

\ el

G H Peripheral actors
1

" K[13 10

12

@' ' 5 5 \
14

Central nodes

Lattice with reduced labelling
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* Bridging Cligues & Edges

Bridging cligue

= = Bridging edge



* Community Detection

Deletion of bridging edges

Central nodes
2,3,4,5 9,06, 14

O Community
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Community Detection

= Limits of Freeman’s approach

» The notion of clique is too restrictive: no cliques — no
communities!

+ There may be many bridging edges

+ Some nodes (even core ones) are lost after the
removal of bridging edges

= Improvement in (Falzon, 2000)

+ All the lattice layers are exploited rather than the
clique (first) layer only

+ No node is lost
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Two-mode Data

0

= G=(V,UV,, EcV, xV,), bipartite graph
= E.g., Southern women attending events

Rokia Missaoui EGC'2013 - Toulouse 33



Two-mode Data

tion of women to events (Davis)
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Actors: 1, .. 18
Events: A, ...N

* Concept Lattice

Concept ({3, 9}, {E, G, H, I}

Three event groups:
G1= {A, B, ... E}
G2={F G, H, I}
G3={J, K, L, M, N}

-

A A
%

Central actors:
1, 2,3, 4,12, 13, 14, 15

J — L: If an actor attends Event J, he does so for Event L
5 — 3, 4: Events attended by Actor 5 are also attended by 3 & 4
Rokia Missaoui EGC'2013 - Toulouse 35



Conversion to one-mode Data

= Projection using matrix multiplication

+ A x AT gives the number of events co-attended by both
the row and the column women

WD PN =

_._._._._._._._.__
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Conversion to one-mode Data

= Projection using matrix multiplication

+ AT x A gives the number of women who attended both
the row event and the column event

T N B LI Ry ==

D o>

- O

R s g cp— y
o Ko

e

1 2 3 4 2 3] ! a 9 10 11 12 13 14
E1 E2 E3 E4 E5 E6 E7 E§ E9 E10 E11 E12 E13 E4
E1 3 2 3 2 3 3 2 3 1 1] 0 0 1] 0
EZ 2 3 3 2 ) ) 2 3 2 0 0 0 0 0
E2 3 3 5] 4 5] 2 4 3 2 0 0 u 0 0
E4 2 2 4 4 4 3 |/ & 2 0 0 0 0 0
ES 3 3 8 4 g8 8 5] 7 3 1] 0 0 N 0
E6 3 3 5 3 6 68 5 7 4 1 1 1 1 14 women attended
ET 2 2 4 3 g S 10 el 5 3 Z 4 2 2
E8 3 3 5 3 7 7 8 @ 9 4 @ 5 2 2 event E8 and one
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Two-mode Data

= Detection of overlapping communities
= Crampes et Plantié, 2012

= Only the concepts of the first two layers of the concept
lattice are generated

=  Measures such as cohesion, separation and autonomy
are used to define communities from concepts

Rokia Missaoui EGC'2013 - Toulouse 38



Biclustering

= Dual-projection approach (Everett & Borgatti,

2012)

Women in this group are
structurally equivalent to
core events

—

SoumbswWNKH

[ 8
9

10
11
16
57 )

_18

15
12
13
14

Rokia Missaoui

Core events Peripheral events

EVELYN |
LAURA |
THERESA |
BRENDA |
CHARLOTTE |
FRANCES |
ELEANOR |
PEARL | |
RUTH | |
VERNE | |
MYRNA | 11 |
DOROTHY | |
OLIVIA | |
FLORA | |
HELEN |
KATHERINE |
SYLVIA |
NORA |

EGC'2013 - Toulouse
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Three-mode Data

= How FCA can be helpful?

e Triadic concept analysis (Lehmann & Wille, 1995)

o [riadic contexts, concepts and diagrams
o Concept trilattices and their visualization

e Triadic implications (Biedermann, 1998)
e Polyadic concept analysis (Voutsadakis, 2002)

Rokia Missaoui EGC'2013 - Toulouse 40



Three-mode Data

= More recent work

- Different types of triadic implications and research topics
to explore (Ganter & Obiedkov, 2004)

- Algorithm TRIAS for triadic concept generation (Jaschke et
al., 2006)

- Two algorithms for triadic concept generation: RSM and
Cube Miner (Ji et al., 2006)

- Data Peeler for n-set computation (Cerf et al., 2008)

- Inter-dimensional rules (Nguyen et al., 2010)

- Triadic concept analysis with fuzzy attributes (Belohlavek
et al., 2010)

Rokia Missaoui EGC'2013 - Toulouse 41



Triadic Concept Analysis

A triadic context K := (K1, K2, K3, Y) where Y C K1 xKax K3.
The elements of K1, K2 and K3 are called (formal) objects,
attributes and conditions, respectively.

A triple (a1, a2, a3) in Y means that object a; has attribute a
under condition asz.

Triadic concept or (closed) tri-set

It is a triple (Al,A27A3) with A; C K7, A> C K5, A3 C K3 and
A1 x Ay x A3z C Y such that no A; (for i=1, 3) can be augmented
without violating this condition. The subsets A;, A, and Az are
called the extent, the intent and the modus of the triadic
concept (A1, Az, A3) respectively.

Rokia Missaoui EGC'2013 - Toulouse
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Three-mode Data

= Three mode (tridimensional) data: objects,
attributes and conditions

= E.g. events (1..5), researchers (P, N, R, K, S) and
roles (a, b, c, d)

abd| abd| ac | ab
ad | bed| abd| ad
abd|d |ab |ab
abd| bd | ab | ab
ad | ad | abd| abc| a

o e A=

L N
N b Lo B e
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= Triadic concepts:

Three-mode Data

+ (12345, PRK, a), (12345, P, ad), (14,PN, bd), ...
= Rules

+ Any role (e.g., event organizer) played by S is also

played by P

+ Whenever N attends events as a speaker (a) and PC
member (d), then P does so

N

R

K

S

h B Lo b e

bed

bd]

ac
abd
ab
ab
abd

ab
ad
ab

ab | d

abc

K(U

o<

R S S

N

e

-—-—-—-—-—uﬂ_

[ ——— -

— b b —

b e b e | DO

—| | =

— p— —
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Heterogeneous information
& Networks
(Sun & Han, 2012)

Dehnition 1.1 (Information network) An information network is defined as a directed graph
G = (V, £) with an object type mapping function 7 : V — A and a link type mapping function
¢ : &€ = R,where cach object v € V belongs to one particular object type T(v) € A, cachlinke € £
belongs to a particular relation ¢(€) € R, and if two links belong to the same relation type, the two
links share the same starting object type as well as the ending object type.

Heterogeneous IN when the number of object or link types is >1

45




Conclusion

= Observations

+ Many studies in FCA can be usefully exploited for
mining social networks: negation, ontology-based
analysis, visualization(e.g., nested line diagrams),
context transformation and decomposition, ...

s Usefulness of FCA extensions

+ Triadic concept analysis (Lehmann & Wille 1995)
+ Logical CA (Ferré, 2000)

+ Relational CA (Rouane-Hacene et al., 2012),

+ Rough CA, fuzzy CA, etc.

Rokia Missaoui EGC'2013 - Toulouse
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