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Symbolic DataSymbolic Data

• Symbolic Data Analysis (Bock and Diday (2000), Billard 
and Diday (2006), Diday and Noirhome (2008))

� Aims to develop data analysis methods (clustering, factorial 
analysis, etc) to manage symbolic data

• Symbolic data generalizes usual categorical or 

quantitative data

� A symbolic variable can take several values

• New types of variables

� Set-valued, ordered list-valued, interval-valued, histogram-
valued variables
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IntervalInterval--Value DataValue Data

Each object i is described by a vector of intervals

Interval-Valued Data Analysis Tools are required

 Pulse Rate Systolic pressure Diastolic pressure 

1 [60, 72] [90,130] [70,90] 

2 [70,112] [110,142] [80,108] 

3 [54,72] [90,100] [50,70] 

4 [70,100] [130,160] [80,110] 

5 [63,75] [60,100] [140,150] 

6 [44,68] [90,100] [50,70] 
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• Central Tendency, Dispersion, Histograms: De Carvalho (1995), Billard 
and Diday (2003)

• Hierarchical and Pyramidal Clustering: Gowda and Diday (1991), Ichino 
and Yaguchi (2004), Guru and Kinaragi (2005), Brito and De Carvalho 
(2008)

• Fatorial Analysis: Chouakria et al (2007), Lauro and Palumbo (2000), 
Palumbo and Verde (2000)

• Time Series Analysis: Maia, De Carvalho and Ludermir (2008), Arroyo 
and Maté (2009), Maia and De Carvalho (2010)

• Multidimensional scaling: Groenen et al (2006)

• MLP: Munõz San Roque et al (2007)

• Regression: Billard and Diday (2000), Lima Neto and De Carvalho 
(2008), Lima Neto and De Carvalho (2010)

Some Data Analysis Methods for IntervalSome Data Analysis Methods for Interval--Valued DataValued Data
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• Diday (1971), Diday and Simon (1976)

• Dynamic clustering are relocation algorithms

• They optimizes (locally) an adequacy criterion

• The adequacy criterion express the best fitting 
between a partition and the set of prototypes which 

represent the clusters

• Prototypes can be a set of individuals, a mean vector, 

a regression model, a factorial plan, etc

• k-means like algorithm: If the criterion is the variance 

and the prototypes are mean vectors of the clusters

Dynamic Clustering AlgorithmDynamic Clustering Algorithm
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• Diday and Govaert (1974), Diday and Govaert (1977)

• There is a different distance for each cluster which 

changes at each iteration

• Main Steps

• Initialization: Starts from a initial partition and alternates 3 steps

• Step 1: Determination of the best prototypes

• Step 2: Determination of the best distances

• Step 3: Determination of the best partition

• Repeat steps 1 to 3 until the convergence of the adequacy 
criterion

Dynamic Clustering Algorithm with Adaptive Dynamic Clustering Algorithm with Adaptive 

DistancesDistances
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• Chavent and Lechevallier (2002), Souza and De 

Carvalho (2004), Chavent et al (2006), De Carvalho et 
al (2006-a, 2006b), Irpino and Verde (2008), De 

Carvalho and Lechevallier (2009-a, 2009-b)

• E: set of n examples described by p interval-valued 

variables

• Each example i is represented by a vector of intervals 

• xi = (xi1, …,xip), where xij=[aij,bij] (j=1,...,p)

• The prototype of cluster Ck is also represented as a 

vector of intervals 

• yk = (yk1,…,ykp), where ykj =[αkj, βkj] (k=1,...,K)

Partitioning Dinamic Clustering Algorithm for Partitioning Dinamic Clustering Algorithm for 

IntervalInterval--Valued DataValued Data



UNIVERSIDADE FEDERAL

DE PERNAMBUCO
cin.ufpe.br

• These algorithms look for 

• a partition of E in K clusters (C1,…,CK ) and

• their corresponding prototypes (y1,…,yK)

• such that an adequacy criterion W is (locally) minimized

• Adequacy criterion:

• xi = (xi1, …,xip), where xij=[aij,bij] (i=1,...,n) (j=1,...,p)

• yk = (yk1,…,ykp), where ykj =[αkj, βkj] (k=1,...,K) (j=1,...,p)

Partitioning Clustering AlgorithmsPartitioning Clustering Algorithms
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• Ichino and yaguchi (1994): 

NonNon--Adaptive Dissimilarity Functions Between Adaptive Dissimilarity Functions Between 

Vectors of IntervalsVectors of Intervals
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• Non Adaptive Dissimilarity Functions

• Euclidean, city-block, Hausdorff distances , Wasserstein 
distances

• They are the same for all clusters

• They do not change at each algorithm’s iteration

NonNon--Adaptive Dissimilarity Functions Between Adaptive Dissimilarity Functions Between 

Vectors of IntervalsVectors of Intervals
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• city-block distances

• Hausdorff distances

• Euclidean distances

Dissimilarity Functions Between Intervals Dissimilarity Functions Between Intervals -- II
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• Wasserstein distance

Dissimilarity Functions Between Intervals Dissimilarity Functions Between Intervals -- IIII
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• Single Adaptive Dissimilarity Functions

• Euclidean, city-block, Hausdorff distances, Wasserstein 
distances

• They are parameterized by a weight vector

• The weight vector is the same for all clusters

• The weight vector changes at each algorithm’s iteration

Single Adaptive Dissimilarity Functions Between Single Adaptive Dissimilarity Functions Between 

Vectors of Intervals Vectors of Intervals -- II
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• Single Adaptive Quadratic Distances

• Mahalanobis distances

• They are parameterized by a weight matrix M

• The weight matrix is the same for all clusters

• The weight matrix changes at each algorithm’s iteration

Single Adaptive Dissimilarity Functions Between Single Adaptive Dissimilarity Functions Between 

Vectors of Intervals Vectors of Intervals -- IIII
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• Cluster Adaptive Dissimilarity Functions

• Euclidean, city-block, Hausdorff, Wasserstein distances

• They are parameterized by weight vectors 

• The weight vectors are different from one cluster to another

• The weight vectors change at each algorithm’s iteration

Cluster Adaptive Dissimilarity Functions Between Cluster Adaptive Dissimilarity Functions Between 

Vectors of IntervalsVectors of Intervals
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• Cluster Adaptive Quadratic Distances

• Mahalanobis distances

• They are parameterized by weight matrices Mk (k=1,…,K)

• The weight matrices are different from one cluster to another

• The weight matrices change at each algorithm’s iteration

Cluster Adaptive Dissimilarity Functions Between Cluster Adaptive Dissimilarity Functions Between 

Vectors of Intervals Vectors of Intervals -- IIII
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• The partition of E in K clusters and the distances are 

fixed 

• The best prototype yk = (yk
1,…,yk

p) has the boundaries 

of the interval yk
j =[αk

j, βk
j] calculated according to

• City-block distances: 

αkj = Median {aij : i ∈ Ck} and βkj = Median {bij : i ∈ Ck}

• Hausdorff distances (Chavent and Lechevallier 2002): 

αkj =µkj - ρkj and βkj = µkj + ρkj where  

µkj = Median {mij : i ∈ Ck} and 
ρkj = Median {rij : i ∈ Ck}

Step 1: Definition of the best prototypes Step 1: Definition of the best prototypes -- II



UNIVERSIDADE FEDERAL

DE PERNAMBUCO
cin.ufpe.br

• Euclidean and Mahalanobis distances: 

αkj= Average {aij : i ∈ Ck} and βkj = Average {bij : i ∈ Ck}

• Wasserstein distances (Irpino and Verde (2008): 

αkj =mkj - rkj and βkj = mkj + rkj where  

mkj = Average {mij: i ∈ Ck} and 
rkj = Average {rij : i ∈ Ck}

Step 1: Definition of the best prototypes Step 1: Definition of the best prototypes -- IIII
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• Euclidean, city-block, Haudorff, Wasserstein distances 

• The partition and the prototypes are fixed 

• The best vector of weights λλλλ = (λ1,…, λp), which 
minimizes the adequacy criterion W under, 

has its components computed according to

Step 2: Definition of the Single best distances Step 2: Definition of the Single best distances -- I I 
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• Mahalanobis distances

• The best matrix of weights M, which minimizes the 

adequacy criterion J under, 

is computed according to

Step 2: Definition of the Single best distances Step 2: Definition of the Single best distances -- IIII
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• Euclidean, city-block Haudorff, Wasserstein distances

• The partition and the prototypes are fixed 

• The best vector of weights λλλλk = (λk1,…, λ kp), which 
minimizes the adequacy criterion J under, 

has its components calculated according to

Step 2: Definition of the Cluster best distances Step 2: Definition of the Cluster best distances -- II

1and0
1

=> ∏ =

p

j kjkj λλ




























=

∑

∏ ∑

∈

= ∈

k

k

Ci

ijijj

pp

h Ci

ihihh

kj

yxd

yxd

),(

),(

1

1
λ



UNIVERSIDADE FEDERAL

DE PERNAMBUCO
cin.ufpe.br

• Mahalanobis distances

• The best matrices of weights Mk (k=1,...,K), which 

minimizes the adequacy criterion J under, 

is computed according to

Step 2: Definition of the Cluster best distances Step 2: Definition of the Cluster best distances -- IIII
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• The prototypes and the distances are fixed 

• The best partition (C1,…,CK ), which minimizes the 

adequacy criterion J, has its clusters updated 

according to

Step 3: Definition of the best partitionStep 3: Definition of the best partition
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• Important step in clustering analysis

• For usual quantitative data, Celeux et al (1989) 

introduced a family of indices for cluster and partition 

interpretation

• For this case, the dispersions decompose into the 

dispersions within clusters plus the dispersions 
between clusters.

• Chavent et al (2006) presented an approach to 

measure the partition (or cluster) quality which holds 

even if the dispersions does not decomposes as 
before

Cluster and partition interpretationCluster and partition interpretation
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• Let us consider

• A partition C = (C1,…,CK ) of E in K clusters of cardinality nk

• Each cluster has  a prototype yk = (yk
1,…,yk

p)

• Let us consider a overall prototype of E as y = (y1,…,yp)

• Overall Dispersion

Cluster and partition interpretationCluster and partition interpretation
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• The overall prototype y = (y1,…,yp) has the boundaries of 

the interval yj =[αj, βj] calculated according to

• City-block distances: 

αj = Median {aij for all i ∈ E} and βj = Median {bij for all i ∈ E}

• Hausdorff distances: αj =µj - ρj and βj = µj + ρj where

µj = median {mij for all i ∈ E} and 

ρj = median {rij for all i ∈ E}

Overall Prototype Overall Prototype -- II
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• The overall prototype y = (y1,…,yp) has the boundaries of 

the interval yj =[αj, βj] calculated according to

• Euclidean and Mahalanobis distances: 

αj = Average {aij for all i ∈ E} and βj = Average {bij for all i ∈ E}

• Wasserstein distances: 

αkj =mkj - rkj and βkj = mkj + rkj where  

mkj = Average {mij: i ∈ Ck for all i ∈ E} and 
rkj = Average {rij : i ∈ Ck for all i ∈ E}

Overall Prototype Overall Prototype -- IIII
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• It decomposes 

• into the sum of the cluster-specific overall dispersion

Overall dispersion Overall dispersion -- II
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• into the sum of the variable-specific overall dispersion (except for 
the Mahalanobis distance)

• into the sum of the variable-cluster-specific overall dispersion (except for 

the Mahalanobis distance)

Overall dispersion Overall dispersion -- IIII
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• It decomposes 

• into the sum of the cluster-specific within-cluster dispersion

WithinWithin--cluster dispersion cluster dispersion -- I I 
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• into the sum of the variable-specific within-cluster dispersion 
(except for the Mahalanobis distance)

• into the sum of the variable-cluster-specific within-cluster 
dispersion (except for the Mahalanobis distance)

WithinWithin--cluster dispersion cluster dispersion -- II II 
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• It decomposes 

• into the sum of the cluster-specific between-cluster dispersion

BetweenBetween--cluster dispersion cluster dispersion -- I I 
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• into the sum of the variable-specific between-cluster dispersion 
(except for the Mahalanobis distance)

• into the sum of the variable-cluster-specific between-cluster 
dispersion (except for the Mahalanobis distance)

BetweenBetween--cluster dispersion cluster dispersion -- II II 
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• T = B + W (Euclidean, Mahalanobis and Wasserstein 

distances)

• Tk = Bk + Wk for k=1,…,K (Euclidean, Mahalanobis and 

Wasserstein distances)

• Tj = Bj + Wj for j=1,…,p (Euclidean and Wasserstein 

distances)

• Tkj = Bkj + Wkj for k=1,…,K and j=1,…,p (Euclidean and 
Wasserstein distances)

Relations Between Overall, Within and Between Relations Between Overall, Within and Between 

Dispersion Dispersion -- II
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• For all distances, the following relations 
hold:

• T > W 

• Tk > Wk for k=1,…,K

• Tj > Wj for j=1,…,p

• Tkj > Wkj for k=1,…,K and j=1,…,p 

Relations Between Overall, Within and Between Relations Between Overall, Within and Between 

Dispersion Dispersion -- IIII
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• Overall heterogeneity index: it measures the quality of 

a partition C = (C1,…,CK ) of Ω in K clusters

• Rule: a partition C in K clusters is better than a partition 

C’ in K clusters if  Q(C) > Q(C’)

Some Partition Interpretation IndicesSome Partition Interpretation Indices
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• Overall heterogeneity index with respect to single 
variables: it measures the quality of a partition C = 

(C1,…,CK ) of Ω in K clusters concerning the j-th variables

• This index measures the discriminant power of the j-th
variable in the partition C = (C1,…,CK )

• The comparison between Qj and Q evaluates if the 
discriminant power of the j-th variable is above or below 

the average

Some Partition Interpretation IndicesSome Partition Interpretation Indices
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• Cluster heterogeneity indices

• The proportion of the overall dispersion in cluster Ck

• The relative contribution of cluster Ck to the overall within-cluster 
dispersion

• A large value of W(k) indicates that cluster Ck is relatively 
heterogeneous in comparison with the other clusters

Some Cluster Interpretation IndicesSome Cluster Interpretation Indices
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• Cluster heterogeneity indices

• The quality of a cluster Ck

• This indice measures the gain of homogeneity of the 

cluster Ck obtained when replacing the overall prototype 
y by the prototype yk in the calculation of the 

homogeneity

Some Cluster Interpretation IndicesSome Cluster Interpretation Indices
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• Cluster heterogeneity indices with respect to sigle 
variables

• The quality of a cluster Ck concerning the j-th variable

• Rule: the j-th variable characterizes the cluster Ck if 
Qj(Ck) > Q(Ck)

Some Cluster Interpretation IndicesSome Cluster Interpretation Indices
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City Temperature Interval-Valued 

Data Set

City Temperature Interval-Valued 

Data Set

Available at http://www.bbc.co.uk/weather/world/city_guides/. 

• gives the average minimal and average maximal monthly 

temperatures of cities in degrees centigrade

• the data set consists of 503 cities described by 12 interval-

valued variables.

• In this example, the algorithm uses single adaptive city-block 

distances

• For a fixed number K = {1,…,10}, the algorithm is run 100 

times and the best result is selected
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City Temperature Interval-Valued 

Data Set

City Temperature Interval-Valued 

Data Set
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Determination of the number of clustersDetermination of the number of clusters

SPAD Software, Gomes Da Silva (2009): peaks on the 

graph of the ``second order differences'‘ of the 
clustering criterion: W(K-1) + W(K+1) – 2 W(K) (K=2,…,9)
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Partition in 5 clustersPartition in 5 clusters

Cluster 1: the cities have very cold temperatures in 

winter similar to that of northern and eastern Europe

Cluster 2: the cities have temperatures similar to that 

of southern Europe

Cluster 3: the cities have temperatures similar to that 

of western and central Europe.

Cluster 4: the cities have temperatures similar to that 

of cities located in the southern hemisphere.

Cluster 5: the cities have a tropical climate and warm 

to hot temperatures
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Partition in 5 clustersPartition in 5 clusters

Q(C)= 62.82 

Variable Qj(C)

January 69.49

February 70.68

March 71.20

April 66.54

May 56.32

June 46.81

July 41.09

August 42.65

September 52.66

October 64.16

November 69.75

December 69.78

Partition qualityPartition quality

Discriminant 

power of the 

months

Partition quality / Variable jPartition quality / Variable j
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Partition in 5 clustersPartition in 5 clusters

Most discriminant monthsMost discriminant months



UNIVERSIDADE FEDERAL

DE PERNAMBUCO
cin.ufpe.br

Partition in 5 clustersPartition in 5 clusters

Least discriminant monthsLeast discriminant months
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Partition in 5 clustersPartition in 5 clusters

Q(C1)=71.65 

Variable Qj(C1) Qj(C2) Qj(C3)

January 76.15 23.10 76.59

February 78.28 20.51 77.49

March 79.22 24.80 79.22

April 70.83 1.46 73.40

May 62.94 6.17 52.02

June 56.27 15.53 34.50

July 53.51 22.33 25.32

August 57.73 22.39 30.93

September 66.86 16.84 52.84

October 71.52 1.47 72.27

November 74.74 10.52 80.76

December 74.72 21.42 78.86

Cluster qualityCluster quality Q(C2)=16.14 Q(C3)=68.67 

Cluster quality/Cluster quality/

Variable jVariable j
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Partition in 5 clustersPartition in 5 clusters

Q(C4)=46.01 

Variable Qj(C4) Qj(C5)

January 63.04 72.77

February 62.12 73.93

March 44.01 75.79

April 10.09 78.64

May 19.15 73.18

June 50.84 57.84

July 62.45 36.85

August 60.29 39.19

September 37.40 63.14

October 1.07 77.99

November 22.18 78.50

December 55.00 73.85

Q(C5)=70.78 

Cluster quality/Cluster quality/

Variable jVariable j
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Partition in 5 clustersPartition in 5 clusters
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Partition in 5 clustersPartition in 5 clusters
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- Interval modelling

- Others distance functions

- Set-valued, list-valued, Histogram-valued data

- Mixed-feature type symbolic data

Some RemarksSome Remarks
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- Others classification structures: overlapping clusters

- Clustering mixtures

Some RemarksSome Remarks
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