Pattern Mining: Past, Present & Future

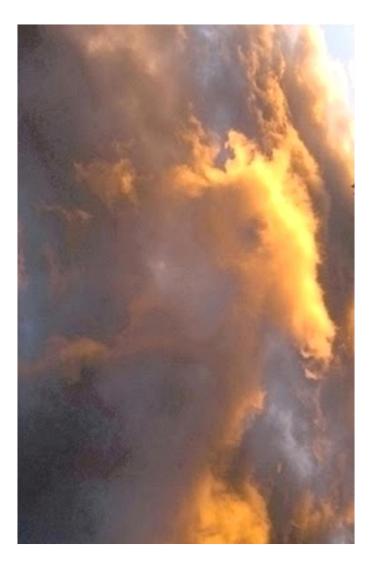
Mohammed J. Zaki Rensselaer Polytechnic Institute (RPI) Troy NY

An outline

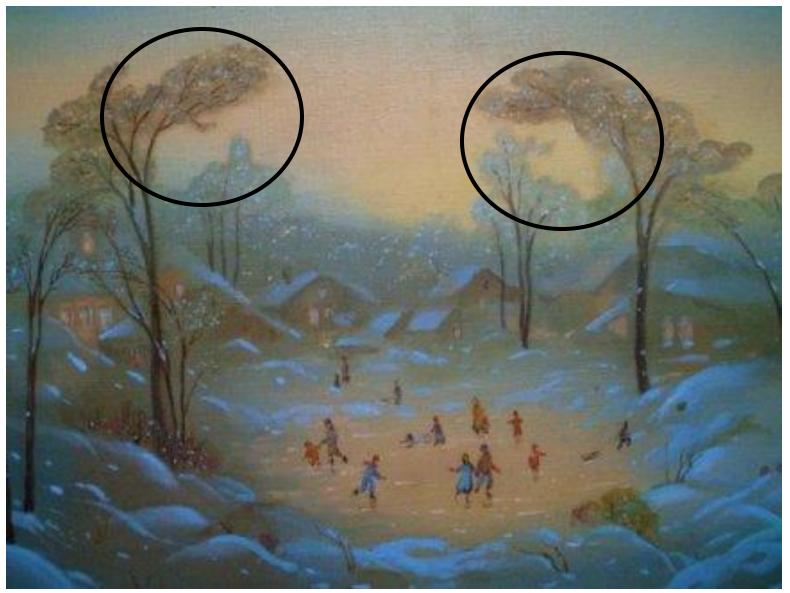
- A personal (biased) perspective
 - Not comprehensive; usual disclaimers!
 - Data mining perspective
 - Completely ignores parallel developments in combinatorial pattern matching, bioinformatics, network science
- Bit of history
- Some applications
- A bit of the present & future ...

Are humans inherently good at pattern mining? Is there a pattern?

Pattern or Illusion?



Pattern or Illusion?



Pattern Mining: Distant Past

- Humans have always been doing pattern mining (?)
 - Observing & predicting nature
 - The terra-firma (flora, fauna)
 - The heavens (climate, navigation)

- Humans generally good at pattern recognition
 - Illusion vs. pattern?
 - We see what we want to see! (bias)
 - Restricted to the "natural"
 - dimensionality: 3D

Pattern vs. Chance

Dog is not the pattern; the black patches are! But is that an interesting pattern?

What is a pattern?

- Repetitiveness
 - Basically depends on counting
- Interestingness
 Avoid trivial patterns
- Chance occurrences
 - -Use statistical tests to weed these out
- Rarity
 - -Leave to anomaly detection

Pattern Mining: The Past

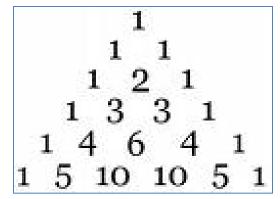
• In the beginning it was market baskets,

and it was all diapers & beer ...

• Or was it?

It's all about sets

- Circa 1993: Agrawal, Imielinski & Swami introduce the concept of association rules & frequent itemsets for market basket data
- 1994: The classic method "Apriori" is proposed by Agrawal and Srikant (AS)
- 1994: Mannila, Toivonen, Verkamo (MTV) propose levelwise method
- 1995: AS and MTV combine their independent methods
- And a revolution is born!



But there is more ...

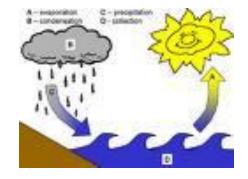
- Circa 1982: Wille invents formal concept analysis (FCA)
- Circa 1988: Luxenburger introduces the notion of "partial implications" which are essentially association rules without the frequent part
- Circa 1998: Marriage of Association Rules and FCA: frequent closed itemsets are born
 - Independently by
 - Zaki & Ogihara (DMKD'98)
 - Pasquier, Bastide, Taouil, Lakhal (BDA'98; in Hammamet!)

Other noteworthy events

- Alternative Algorithmic Paradigms
 - Vertical tidsets (ECLAT) by Zaki et al, 1997
 - FP-Growth by Han et al, 2000
- Maximal itemsets
 - Bayardo, 1998 (also mentioned in Zaki et al, 1997)
- Summarization
 - Closed itemsets (ZO & PBTL, 1998)
 - Free sets (Boulicaut, Bykowski, Rigotti, 2000)
 - Minimal Generators (Bastide, Taouil, Pasquier, Stumme, Lakhal, 2000)
 - Non-derivable itemsets (Calders & Goethals, 2002)
 - Active area of research (e.g. S. Ben Yahia, EGC'10)

What about sequences?

- 1995: Agrawal & Srikant propose sequential patterns
 Notion of frequent sequences
 Levelwise method like apriori
- Levelwise method like apriori
 String matching & sequence analysis has a much older history in combinatorial pattern matching & bioinformatics



Sequence Mining

- Major paradigms
 - Levelwise: AS'95
 - Episode Mining: Mannila et al, 1995
 - Vertical (SPADE): Zaki 1998
 - Projection-based (prefixSPAN): Pei et al, 2001
- Summarization

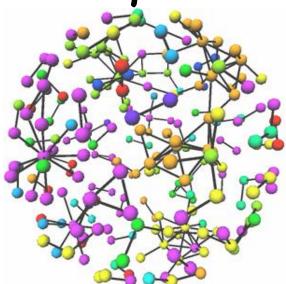
-Closed sequences: Yan et al, 2003

On to trees

- Induced trees: Wang & Liu, 1998
- Embedded trees: Zaki, 2002 (rightmost extension)
 - Similar candidate generation in Asai et al, 2002
- Maximal & closed trees:
 Chi et al., 2004

And then there are Graphs

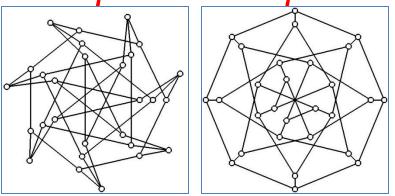
- Circa 1994-1995:
 - Heuristic Search
 - Cook & Holder, 1994
 - Yoshida & Motoda, 1995
- Frequent Subgraphs



- AGM: Inokuchi, Washio, Motoda, 2000 (levelwise)
- FGM: Kuramochi & Karypis, 2001 (levelwise)
- gSpan: Yan & Han, 2002 (rightmost extension)
- FSM: Huan et al, 2003 (canonical matrices)
- Closed & Maximal graphs: Yan & Han, 2003;
 Huan et al, 2004, respv.

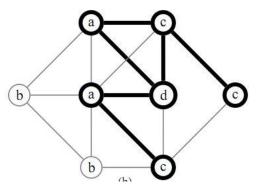
Taming of the Morphs

- Challenge of isomorphisms
- How to detect duplicates?
 - -Graph Isomorphism

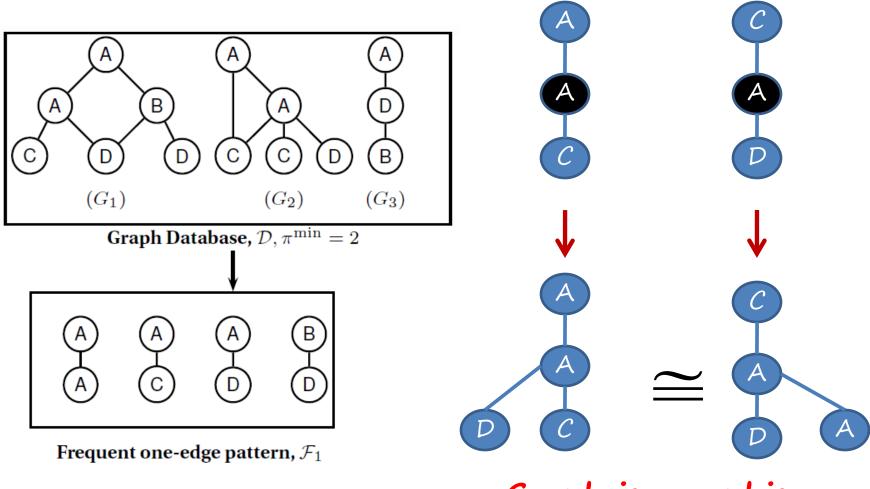


• How to count occurrences?

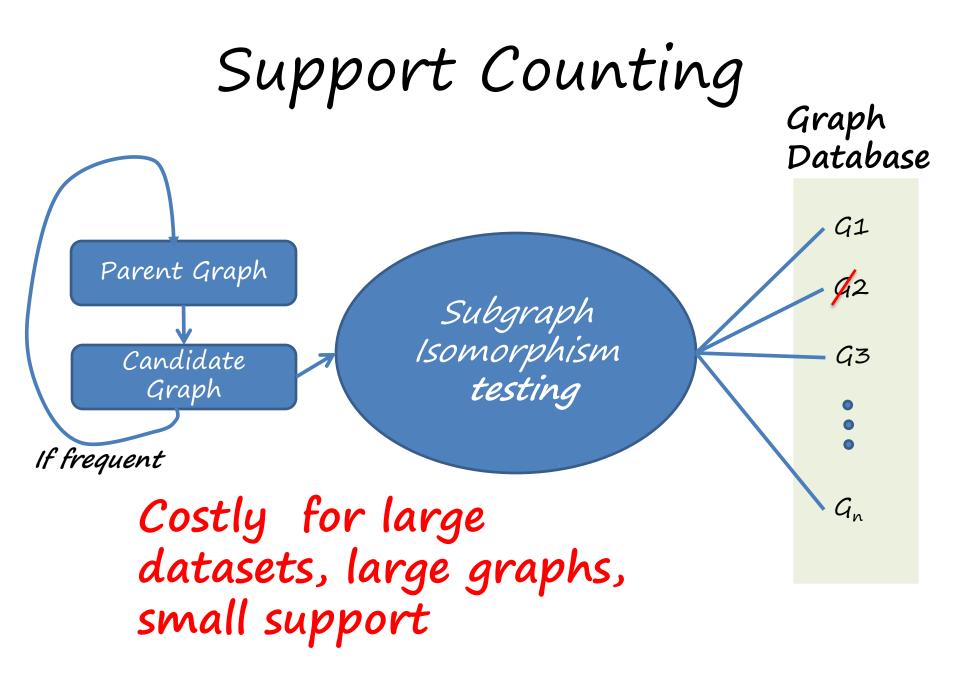
– Subgraph Isomorphism



Candidate Generation

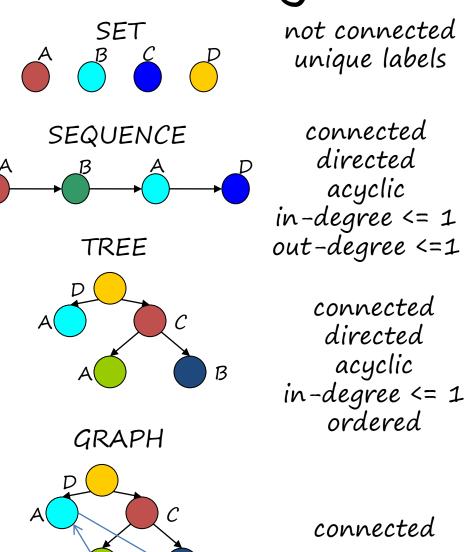


Graph isomorphism

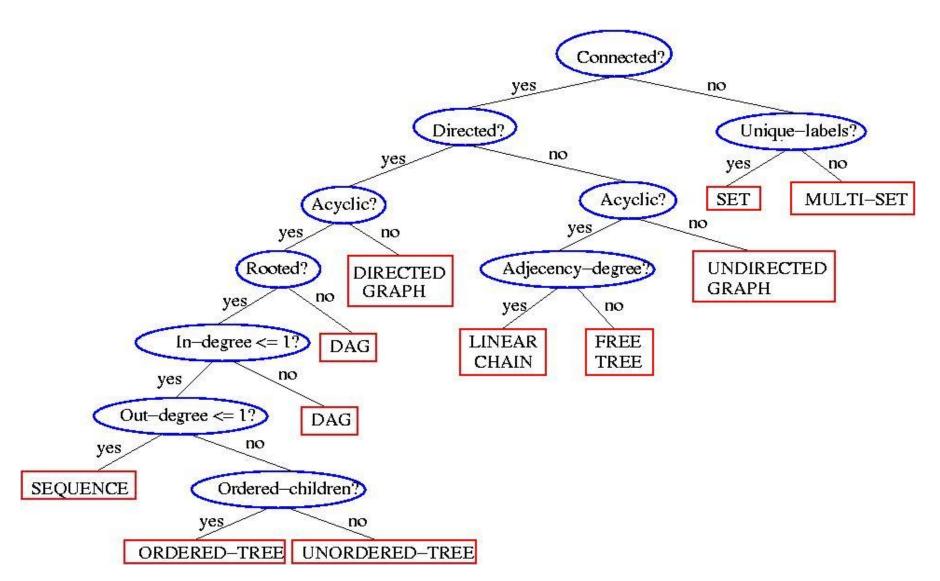


Grand Unified Theory?

- Data Mining Template Library
 - Generic data structures & algorithms
 - Graphs, Trees, Sequences, Itemsets
 - Open-source;
 downloaded over
 5300 times from
 dmtl.sourceforge.net
 - DMKD'08



Property Tree (Extensible)



What's good about frequent pattern mining?

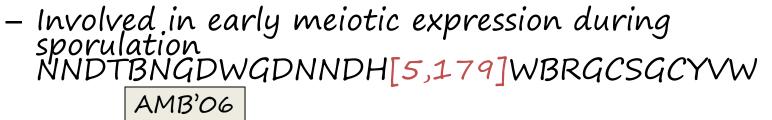
- Fundamental exploratory mining task
- Very efficient algorithms for counting
- Fast counting a basis for advanced statistical methods

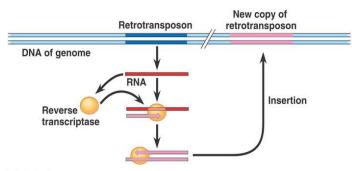
– Both Frequentist & Bayesian

- Patterns a basis for advanced kernel methods
- Varied applications: examples from bioinformatics

Structured Sequence Motifs

- Jumping Genes: LTR Retrotransposons
 - Ty1 Copia Motif in A. thaliana
 - TNGA[12,14]TWNYTNNA[19,21] TNTMYRT[4,6]WNCCNNNNRG [72,95]TGNNA[100,125] TNTANRTNRAYGA
- Composite Regulatory Patterns (Transcription Factors)
 - UASH-URS1 cooperative factors in Saccharomyces cerevisiae (Yeast)

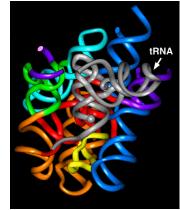




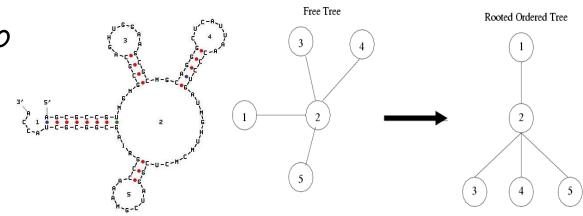
(b) Retrotransposon movement

What does tree mining have to do with Mining Consensus RNA Motifs

- DB: 34 Eukarya RNA (RnaseP DB)
 - Ribonucleoprotein endonucleases that helps cleave transfer RNA precursors
 - Convert them into trees (RNA-as-Graph DB)
- Can also mine RNA foldings



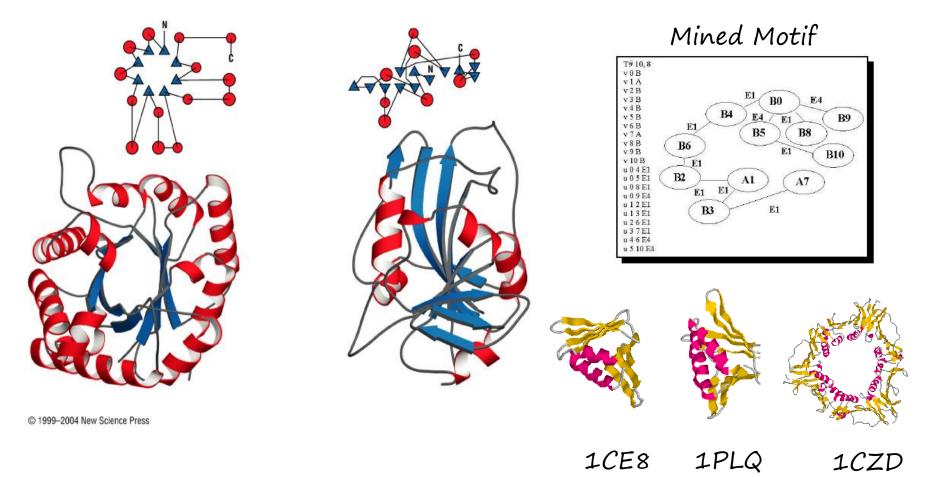
RnaseP B. Subtilis



tRNA 2D structure converted to trees

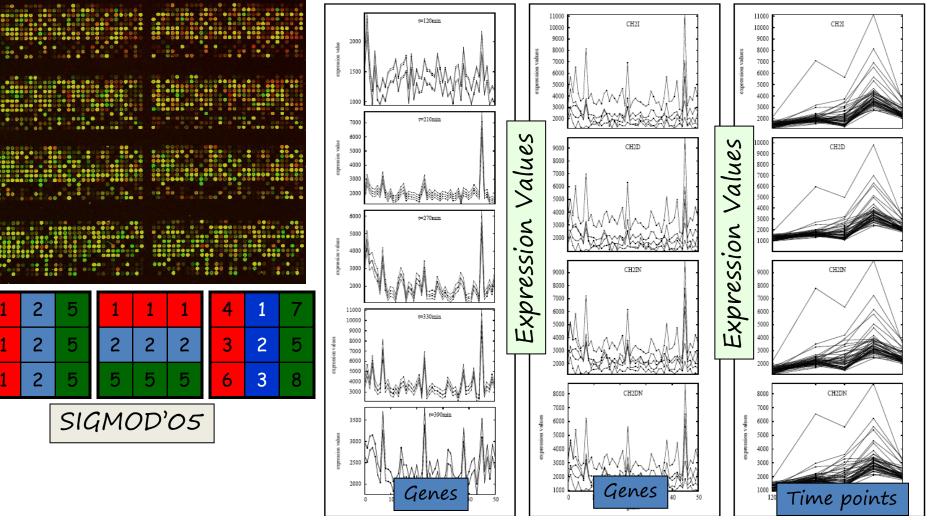
Here come the graphs: Protein Structural Motifs

From Protein Structure and Function by Gregory A Petsko and Dagmar Ringe



DNA Polymerase Factor Motif

Microarray Gene Expression Analysis: Coherent Clusters



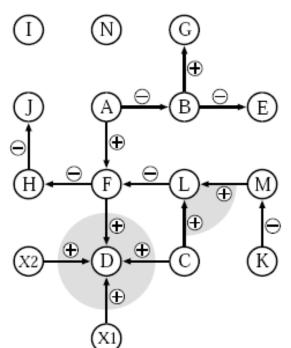
Sample Curves

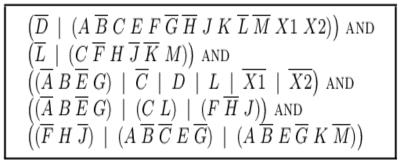
Time Curves

Gene Curves

Gene Networks: Boolean Expressions (AND, OR, CNF, DNF)

- Genes are involved in complex regulatory networks
- Can be represented as boolean networks
- Example: 16 genes
- \oplus : Activation, \ominus : Deactivation
- B, E, H, J, M are on if parents off
- G, L, D on if all parents on
 D depends on C, F, X1, X2
- Fon if A but not L
- A, C, I, K, N, X1, X2 don't depend on any other genes
- Generate a DB using 7 free genes:
 Truth table has 2⁷=128 rows



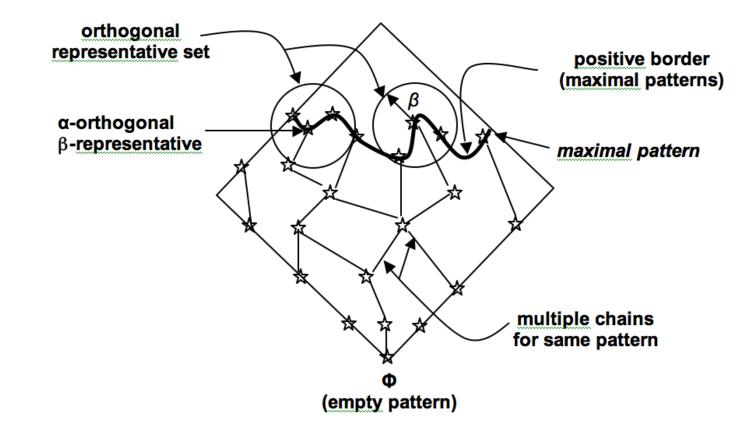


The death of complete pattern mining?

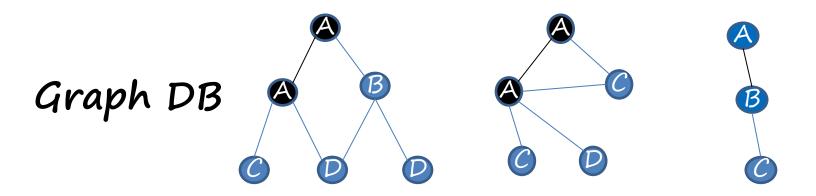
- The attack of the isomorphisms
- The era of complete enumeration of all frequent patterns over!
 - Infeasible in real world graphs
 - 3 graphs (genome-wide protein networks: pathways, gene expression, interactions), average 2154 nodes & 81607 edges (3MB total size)
 - Tried gSpan, Gaston, DMTL
 - Could not mine even at 100% support: 7GB output, 8 million subgraphs. Abort!
- For many applications a representative or summary set is enough
- How to sample interesting patterns?
 Take a (random) walk!

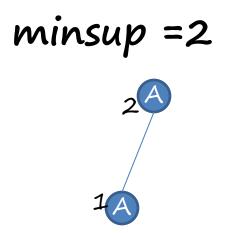
Sampling Maximal Subgraphs

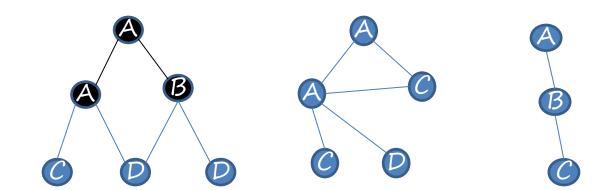
 random walks over chains of subgraph partial order graph (POG): ORIGAMI (2007)



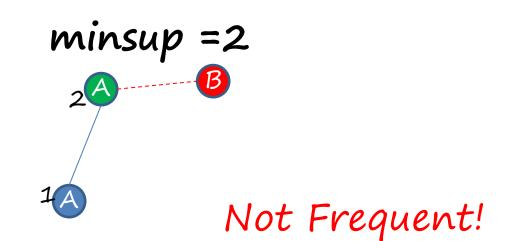
One Iteration: Walk over Chains

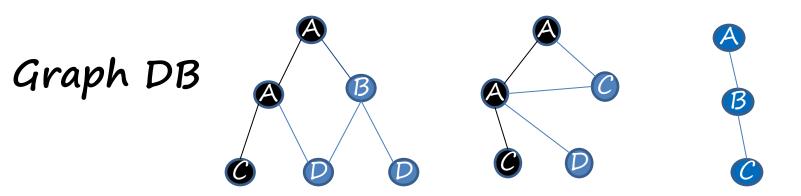


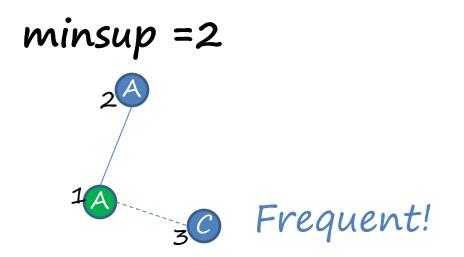


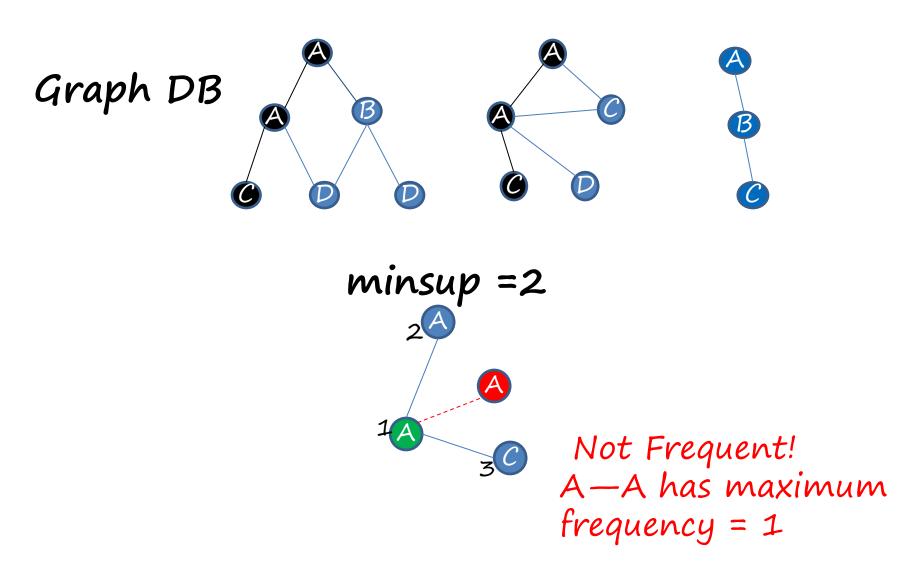


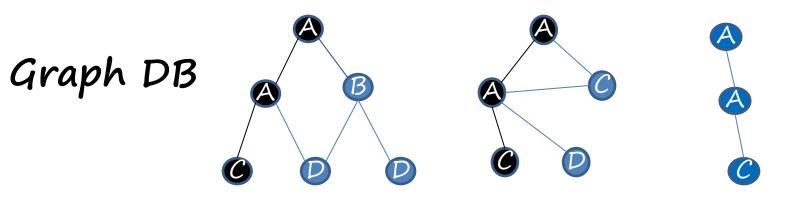
Graph DB

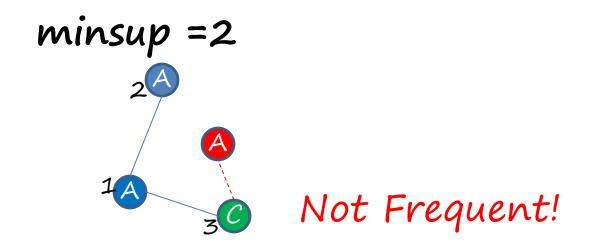




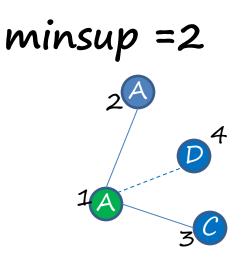








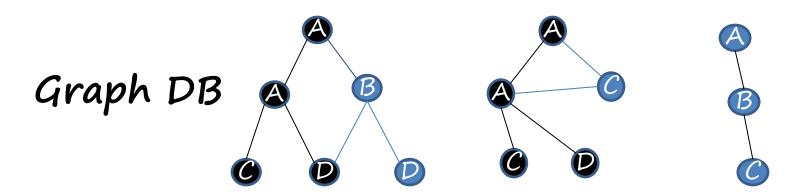
Pattern Extension ... Graph DB

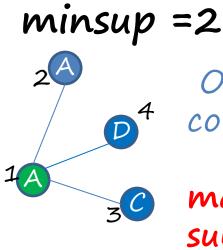


Frequent!

Pattern Extension ... Graph DB B minsup =2 4 Not Frequent! Edge A—D has 30 maximum frequency = 1

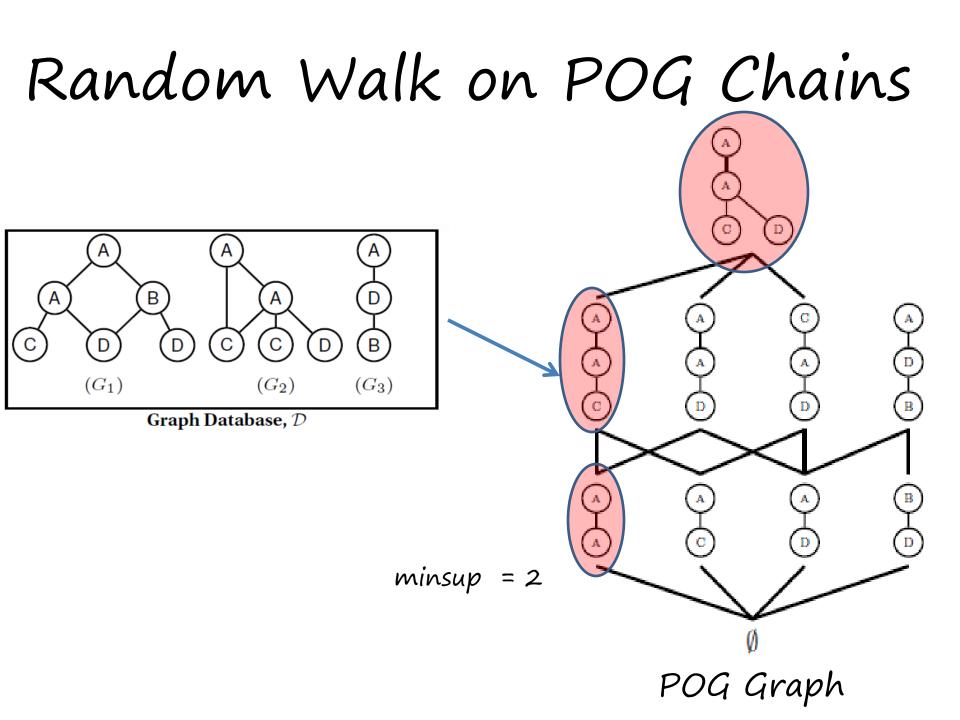
Are we there yet? random walk to maximality





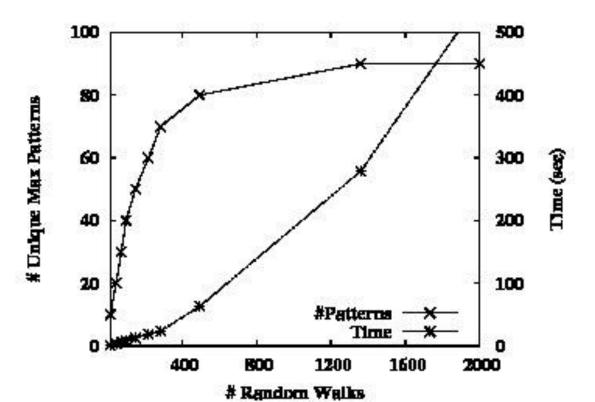
One iteration completed!

maximal frequent subgraph is obtained



Experimental Evidence

- All 300 maximal patterns found in 1400 iterations: total time 300 sec
- Complete methods terminated (7GB)



The good & bad

- © Walks over chains is easy to implement
 - Minimal memory requirement
 - Each iteration yields one maximal pattern
 - Stop when k distinct patterns are mined
- 🐵 No guarantee of uniform sample
 - If e₁ e₂ ... e_m the sequence of random edge extensions, probability of the edge sequence

$$p(e_1, e_2, \dots, e_m) = p(e_1) \prod_{i=2}^m p(e_i | e_1, \dots, e_{i-1})$$

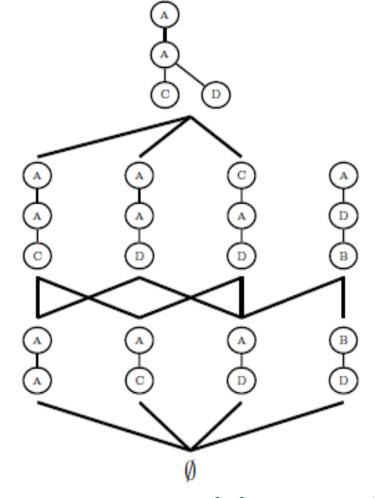
If a pattern has ES valid edge sequences, its generation probability is

$$\sum_{(e_1,e_2,\ldots,e_m)\in ES} p(e_1,e_2,\ldots,e_m)$$

 Longer patterns have more valid paths, but probability is very small; small patterns prefered

Can uniformity be guaranteed? Markov Chain Monte Carlo Sampling

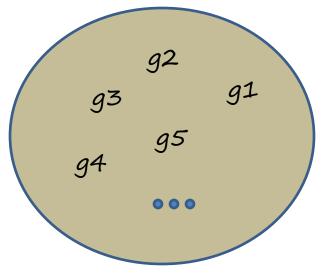
- POG as a transition graph
- Random walks on POG
- Local neighborhood
 subgraph –
 supergraph
- Local transition probability



POG as transition graph

MCMC Challenges

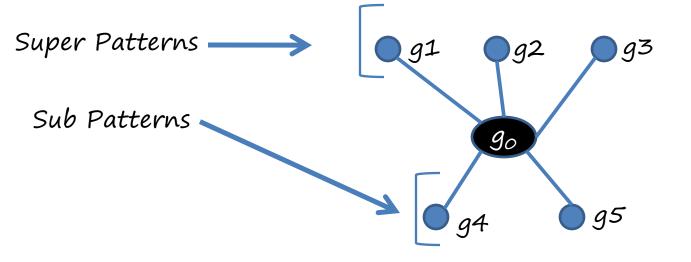
- POG unknown
 Don't want to know
- Complete statistics about frequent subgraphs unknown.
- Target distribution is not known entirely



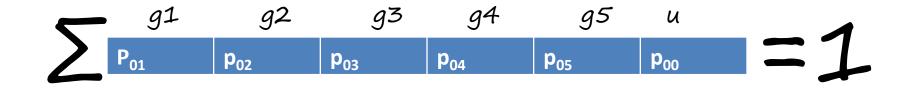
Output Space of Graph Mining: POG

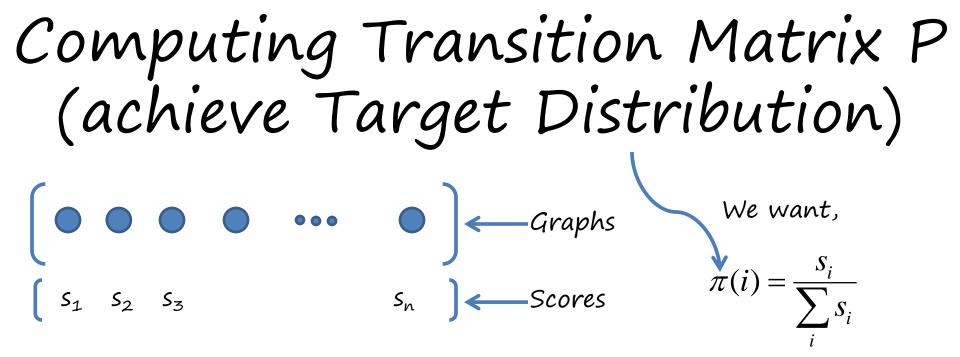
$$\begin{bmatrix} \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet & \bullet \end{bmatrix} \leftarrow Graphs \qquad We want,$$
$$[s_1 \ s_2 \ s_3 \ s_4 \ s_n \end{bmatrix} \leftarrow Scores \qquad \pi(i) = \frac{s_i}{\sum_i s_i}$$

Local Computation of POG



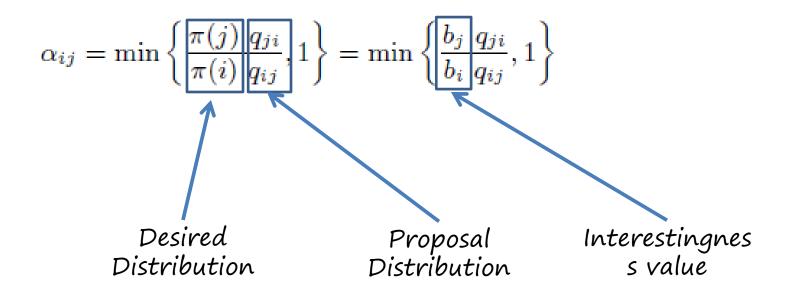
Pattern that are not part of the output space is discarded during local neighborhood computation

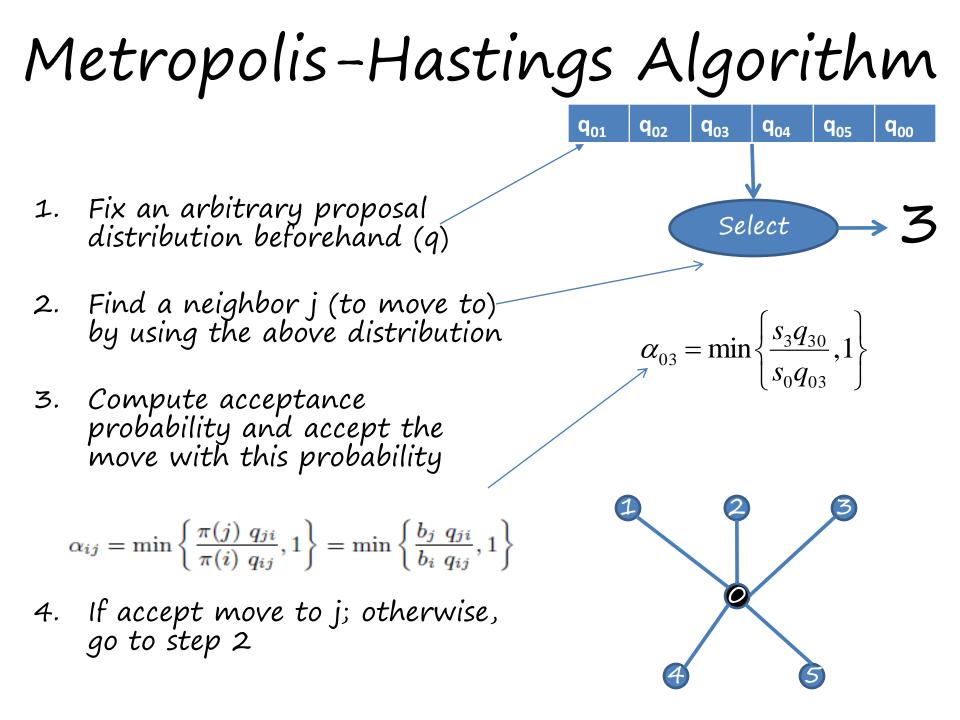




- Main task is to choose P, so that the desired stationary distribution is achieved
- Compute only one row of P (local computation)

Acceptance Probability Computation



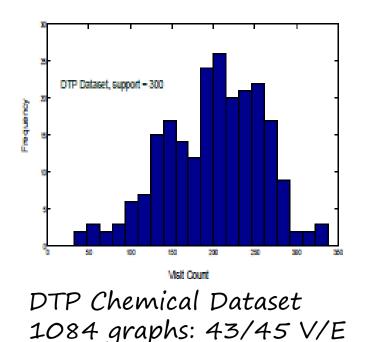


Different Sampling Tasks

- Uniform Sampling of Frequent Patterns
 - To explore the frequent patterns
 - To set a proper value of minimum support
 - To perform approximate counting
- Support Biased Sampling
 - To find Top-k Patterns in terms of support value
- Discriminatory subgraph sampling
 - Find subgraphs that are good features for classification
- Uniform Sampling of Maximal Pattern
 - For summarization of frequent patterns

Uniform Sampling of all Frequent Patterns

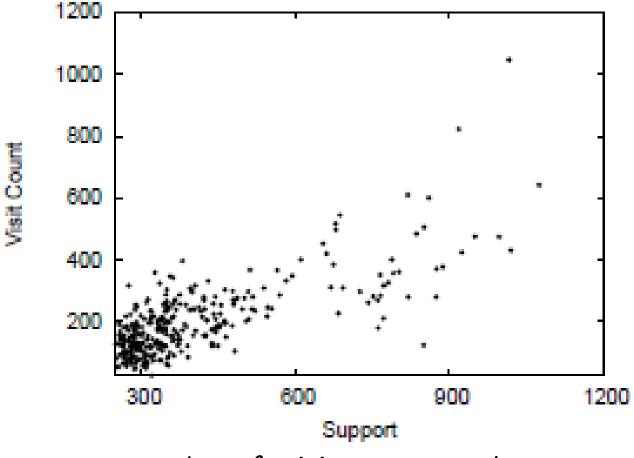
- Experiment Setup
 - Run the sampling algorithm for sufficient number of iterations and observe the visit count distribution
 - For a dataset with n frequent patterns, we perform 200*n iterations



Uniform Sampling				
Max	Min	Median	Std	
338	32	209	59.02	
	Ideal Sampling			

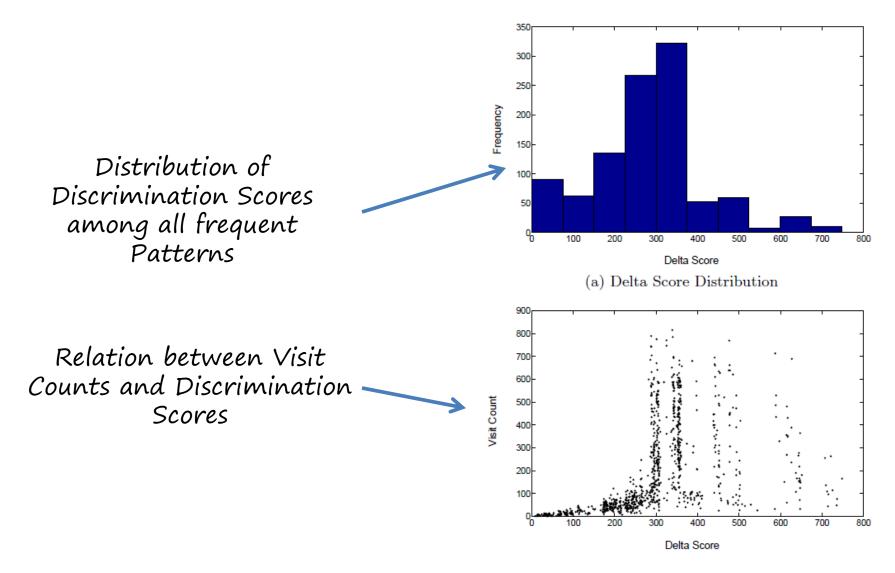
Ideal Sampling			
Median	Std		
200	14.11		

Support Biased Sampling

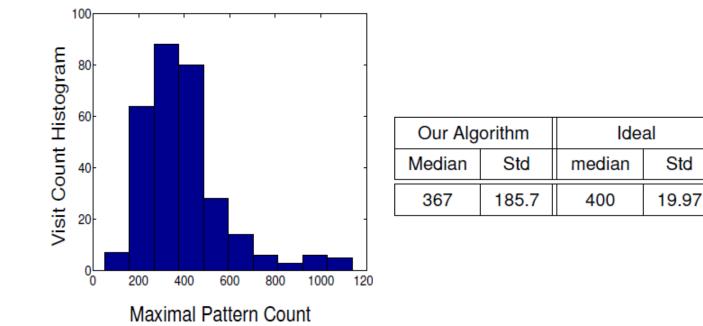


Scatter plot of Visit count and Support shows positive Correlation

Discriminatory Sampling



Maximal Pattern Sampling



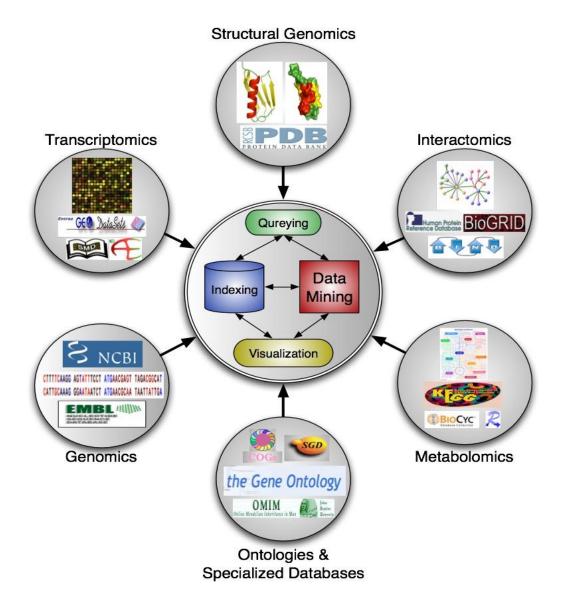
Sampling Summary: The good & bad

- Oquality: Sampling quality guaranty
- Scalability: Visits only a small part of the search space
- Son-Redundant: finds very dissimilar patterns by virtue of randomness
- Genericity: In terms of pattern type and sampling objective
- ©Efficiency still a concern for large graphs
 - support counting is still a bottleneck
 - How to improve on the isomorphism checking
 - How to effectively parallelize the support counting

Where are we headed? Into the mouth of the beast!

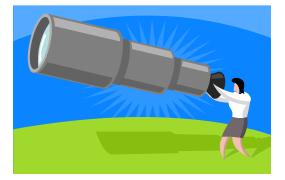
- Emergence of "complex" graphs
 - Enriched networks
 - Weighted
 - Multi-labeled (nodes & edges)
 - Temporal/spatial attributes
 - Distributed (multi-relational)
 - Uncertain
 - Dynamic
 - Massive & Unbounded (not known fully)
 - Networks, Networks & more Networks (everything is linked!)
 - E.g. Omics in Systems Biology, Semantic Web, Social Networks, ...

Example: Mining the Omics Graph



Future of Pattern Mining

- Integrated Mining over enriched graphs and networks
- Constraints: Application oriented mining
- Approximate and uncertain pattern mining
- Dynamics & evolving pattern mining
- Sampling and summarization
- Patterns for Kernel Methods
 - Clustering (e.g., Spectral Methods)
 - Classification (e.g., Graph kernels)
- Grand Unified Theory Revisited



 Bridge the gap between social network research, combinatorial pattern mining, bioinformatics, and data mining

The future's so bright, I gotta wear shades!